Skip to main content

Abstract

Gynecologists usually treat PCOS only as an endocrine disorder, without recognition of the very important part that insulin resistance plays in the syndrome.

In this chapter, the way to treat PCOS from a metabolic point of view, without dwelling on the use of oral contraceptives and antiandrogen drugs, is discussed.

Lifelong strategies that improve the care of women with PCOS are essential, because of the chronic nature of the syndrome and the young age at which all the symptoms begin to manifest.

A valid therapeutic protocol for PCOS includes diet, physical exercise, and insulin-sensitizing agents such as metformin and inositol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Connor A, Gibney J, Roche HM (2010) Metabolic and hormonal aspects of polycystic ovary syndrome: the impact of diet. Proc Nutr Soc 69:628–635

    Article  PubMed  CAS  Google Scholar 

  2. Stansbury J (2012) The PCOS health & nutrition guide: includes 125 recipes for managing polycystic ovarian syndrome. Robert Rose, ISBN: 9780778804055

    Google Scholar 

  3. Andersen P, Seljeflot I, Abdelnoor M et al (1995) Increased insulin sensitivity and fibrinolytic capacity after dietary intervention in obese women with polycystic ovary syndrome. Metabolism 44:611–616

    Article  CAS  PubMed  Google Scholar 

  4. Moran LJ, Noakes M, Clifton PM et al (2003) Dietary composition in restoring reproductive and metabolic physiology in overweight women with polycystic ovary syndrome. J Clin Endocrinol Metab 88:812–819

    Article  CAS  PubMed  Google Scholar 

  5. Crosignani PG, Colombo M, Vegetti W et al (2003) Overweight and obese anovulatory patients with polycystic ovaries: parallel improvements in anthropometric indices, ovarian physiology and fertility rate induced by diet. Hum Reprod 18:1928–1932

    Article  PubMed  Google Scholar 

  6. Herriot AM, Whitcroft S, Jeanes Y (2008) A retrospective audit of patients with polycystic ovary syndrome: the effects of a reduced glycaemic load diet. J Hum Nutr Diet 21(4):337–345

    Article  CAS  PubMed  Google Scholar 

  7. Marsh K, Brand-Miller J (2005) The optimal diet for women with polycystic ovary syndrome? Br J Nutr 94:154–165

    Article  CAS  PubMed  Google Scholar 

  8. Farshchi H, Rane A, Love A, Kennedy RL (2007) Diet and nutrition in polycystic ovary syndrome (PCOS): pointers for nutritional management. J Obstet Gynaecol 27:762–773

    Article  CAS  PubMed  Google Scholar 

  9. Liepa GU, Sengupta A, Karsies D (2008) Polycystic ovary syndrome (PCOS) and other androgen excess-related conditions: can changes in dietary intake make a difference? Nutr Clin Pract 23:63–71

    Article  PubMed  Google Scholar 

  10. Diamanti-Kandarakis E, Katsikist I, Piperi C et al (2007) Effect of long-term orlistat treatment on serum levels of advanced glycation end-products in women with polycystic ovary syndrome. Clin Endocrinol (Oxf) 66:103–109

    CAS  Google Scholar 

  11. Elsenbruch S, Benson S, Hahn S et al (2006) Determinants of emotional distress in women with polycystic ovary syndrome. Hum Reprod 21:1092–1099

    Article  PubMed  Google Scholar 

  12. Jayagopal V, Kilpatrick ES et al (2005) Orlistat is as beneficial as metformin in the treatment of polycystic ovarian syndrome. J Clin Endocrinol Metabol 90:729–733

    Article  CAS  Google Scholar 

  13. Gower BA, Chandler-Laney P, Ovalle F et al (2013) Favourable metabolic effects of a eucaloric lower-carbohydrate diet in women with PCOS. Clin Endocrinol (Oxf) 79(4):550–557

    Article  CAS  Google Scholar 

  14. Sharman MJ, Gomez AL, Kraemer WJ, Volek JS (2004) Very low-carbohydrate and low-fat diets affect fasting lipids and post-prandial lipemia differently in overweight men. J Nutr 134:880–885

    CAS  PubMed  Google Scholar 

  15. McAuley KA, Hopkins CM, Smith KJ et al (2005) Comparison of high-fat and high-protein diets with a high-carbohydrate diet in insulin-resistant obese women. Diabetologia 48:8–16

    Article  CAS  PubMed  Google Scholar 

  16. Parker B, Noakes M, Luscombe N, Clifton P (2002) Effect of a high-protein, high-monounsaturated fat weight loss diet on glycemic control and lipid levels in type 2 diabetes. Diabetes Care 25:425–430

    Article  PubMed  Google Scholar 

  17. Kwiterovich PO, Vining EPG et al (2003) Effect of a high-fat ketogenic diet on plasma levels of lipids, lipoproteins, and apolipoproteins in children. JAMA 290:912–920

    Article  CAS  PubMed  Google Scholar 

  18. Jarvi AE, Karlstrom BE, Granfeldt YE et al (1999) Improved glycemic control and lipid profile and normalized fibrinolytic activity on a low-glycemic index diet in type 2 diabetic patients. Diabetes Care 22:10–18

    Article  CAS  PubMed  Google Scholar 

  19. Jenkins DJ, Wolever TM et al (1985) Low glycemic index carbohydrate foods in the management of hyperlipidemia. Am J Clin Nutr 42:604–617

    CAS  PubMed  Google Scholar 

  20. Liu S, Willett WC, Stampfer MJ et al (2000) A prospective study of dietary glycemic load, carbohydrate intake and risk of coronary heart disease in US women. Am J Clin Nutr 71:1455–1461

    CAS  PubMed  Google Scholar 

  21. Salmeron J, Manson JE, Stampfer MJ et al (1997) Dietary fibre, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. J Am Med Assoc 277:472–477

    Article  CAS  Google Scholar 

  22. Brynes AE, Edwards MC, Ghatei MA et al (2003) A randomized four-intervention crossover study investigating the effect of carbohydrates on daytime profiles of insulin, glucose, non-esterified fatty acids and triacylglycerols in middle-aged men. Br J Nutr 89:207–218

    Article  CAS  PubMed  Google Scholar 

  23. Marsh KA, Steinbeck KS, Atkinson FS et al (2010) Effect of a low glycemic index compared with a conventional healthy diet on polycystic ovary syndrome. Am J Clin Nutr 92:83–92

    Article  CAS  PubMed  Google Scholar 

  24. Jenkins D, Wolever T, Bacon S (1980) Diabetic diets: high carbohydrate combined with high fiber. Am J Clin Nutr 33(8):1729–1733

    CAS  PubMed  Google Scholar 

  25. Simpson HC, Simpson RW, Lousley S et al (1981) A high carbohydrate leguminous fiber diet improves all aspects of diabetic control. Lancet 1(8210):1–5

    Article  CAS  PubMed  Google Scholar 

  26. Leidy HJ, Bossingham MJ, Mattes RD, Campbell W (2009) Increased dietary protein consumed at breakfast leads to an initial and sustained feeling of fullness during energy restriction compared to other meal times. Br J Nutr 101:798–803

    Article  CAS  PubMed  Google Scholar 

  27. Veldhorst M, Smeets A et al (2008) Protein-induced satiety: effects and mechanisms of different proteins. Physiol Behav 94:300–307

    Article  CAS  PubMed  Google Scholar 

  28. Leidy HJ, Racki EM (2010) The addition of a protein-rich breakfast and its effects on acute appetite control and food intake in “breakfast-skipping” adolescent. Int J Obes 34:1125–1133

    Article  CAS  Google Scholar 

  29. Stern L, Iqbal N et al (2004) The effects of low-carbohydrate versus conventional weight loss diets in severely obese adults: one-year follow-up of a randomized trial. Ann Intern Med 140:778–785

    Article  PubMed  Google Scholar 

  30. Kasim-Karakas S, Almario RU, Gregory L et al (2004) Metabolic and endocrine effects of a polyunsaturated fatty acid-rich diet in polycystic ovary syndrome. J Clin Endocrinol Metab 89(2):615–620

    Article  CAS  PubMed  Google Scholar 

  31. Kerver JM, Yang EJ, Obayashi S et al (2006) Meal and snack patterns are associated with dietary intake of energy and nutrients in US adults. J Am Diet Assoc 106:46–53

    Article  PubMed  Google Scholar 

  32. Farshchi H, Taylor M, Macdonald I (2004) Regular meal frequency creates more appropriate insulin sensitivity and lipid profiles compared with irregular meal frequency in healthy lean women. Eur J Clin Nutr 58:1071–1077

    Article  CAS  PubMed  Google Scholar 

  33. Farshchi H, Taylor M, Macdonald I (2005) Deleterious effects of omitting breakfast on insulin sensitivity and fasting lipid profiles in healthy lean women. Am J Clin Nutr 81:388–396

    CAS  PubMed  Google Scholar 

  34. Panidis D, Tziomalos K et al (2013) Lifestyle intervention and anti-obesity therapies in the polycystic ovary syndrome: impact on metabolism and fertility. Endocrine 44:583–590

    Article  CAS  PubMed  Google Scholar 

  35. Jakubowics D, Barnea M, Wainstein J, Froy O (2013) Effects of caloric intake timing on insulin resistance and hyperandrogenism in lean women with polycystic ovary syndrome. Clin Sci 125:423–432

    Article  CAS  Google Scholar 

  36. Jenkins DJ, Wolever TM, Taylor RH et al (1981) Glycemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr 34(3):362–366

    CAS  PubMed  Google Scholar 

  37. Jenkins DJ, Kendall CW, McKeown-Eyssen G et al (2008) Effect of a low-glycemic index or a high-cereal fiber diet on type 2 diabetes: a randomized trial. JAMA 300(23):2742–2753

    Article  CAS  PubMed  Google Scholar 

  38. Brouns F, Bjorck I, Frayn KN et al (2005) Glycaemic index methodology. Nutr Res Rev 18(1):145–171

    Article  CAS  PubMed  Google Scholar 

  39. Glycemic load defined. Glycemic Research Institute. Retrieved 8 Feb 2013

    Google Scholar 

  40. Holt S, Brand-Miller JC, Petocz P (1997) An insulin index of foods: the insulin demand generated by 1000-kJ portions of common foods. Am J Clin Nutr 66(5):1264–1276

    CAS  PubMed  Google Scholar 

  41. Palomba S, Giallauria F, Falbo A et al (2008) Structured exercise training programme versus hypocaloric hyperproteic diet in obese polycystic ovary syndrome patients with anovulatory infertility: a 24 week pilot study. Hum Reprod 23:642–650

    Article  CAS  PubMed  Google Scholar 

  42. Hawley JA (2004) Exercise as a therapeutic intervention for the prevention and treatment of insulin resistance. Diabetes Metab Res Rev 20:383–393

    Article  CAS  PubMed  Google Scholar 

  43. Farrell K, Antoni MH (2010) Insulin resistance, obesity, inflammation, and depression in polycystic ovary syndrome: biobehavioral mechanisms and interventions. Fertil Steril 94:1565–1574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Giallauria F, Palomba L, Maresca L et al (2008) Exercise training improves autonomic function and inflammatory pattern in women with polycystic ovary syndrome (PCOS). Clin Endocrinol (Oxf) 69:792–798

    Article  CAS  Google Scholar 

  45. Thomson RL, Buckley JD, Noakes M et al (2008) The effect of a hypocaloric diet with and without exercise training on body composition, cardiometabolic risk profile, and reproductive function in overweight and obese women with polycystic ovary syndrome. J Clin Endocrinol Metab 93:3373–3380

    Article  CAS  PubMed  Google Scholar 

  46. Moran LJ, Pasquali R, Teede HJ et al (2009) Treatment of obesity in polycystic ovary syndrome: a position statement of the Androgen Excess and Polycystic Ovary Syndrome Society. Fertil Steril 92:1966–1982

    Article  PubMed  Google Scholar 

  47. Practice Committee of the American Society for Reproductive Medicine. Use of insulin sensitizing agents in the treatment of polycystic ovary syndrome. Fertil Steril 2008;90:S69–S73

    Google Scholar 

  48. Wild RA, Carmina E, Diamanti-Kandarakis E et al (2010) Assessment of cardiovascular risk and prevention of cardiovascular disease in women with the polycystic ovary syndrome: a consensus statement by the Androgen Excess and Polycystic Ovary Syndrome (AE-PCOS) Society. J Clin Endocrinol Metab 95:2038–2049

    Article  CAS  PubMed  Google Scholar 

  49. Antonucci T, Whitcomb R, McLain R et al (1998) Impaired glucose tolerance is normalized by treatment with the thiazolidinedione troglitazone. Diabetes Care 20:188–193

    Article  Google Scholar 

  50. Lehmann JM, Moore LB, Smith-Oliver TA et al (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator activated receptor gamma (PPAR gamma). J Biol Chem 270:12953–12956

    Article  CAS  PubMed  Google Scholar 

  51. Yki-Jarvinen H (2004) Thiazolidinediones. N Engl J Med 351:1106–1118

    Article  PubMed  Google Scholar 

  52. Ehrmann D, Schneider DJ, Sobel BE (1997) Troglitazone improves defects in insulin action, insulin secretion, ovarian steroidogenesis and fibrinolysis in women with polycystic ovary syndrome. J Clin Endocrinol Metab 82:2108–2116

    CAS  PubMed  Google Scholar 

  53. Dunaif A, Scott D, Finegood D et al (1996) The insulin sensitizing agent troglitazone improves metabolic and reproductive abnormalities in the polycystic ovary syndrome. J Clin Endocrinol Metab 81:3299–3306

    CAS  PubMed  Google Scholar 

  54. Azziz R, Ehrmann D, Legro RS et al (2001) Troglitazone improves ovulation and hirsutism in the polycystic ovary syndrome: a multicenter, double blind, placebo-controlled trial. J Clin Endocrinol Metab 86:1626–1632

    CAS  PubMed  Google Scholar 

  55. Belli SH, Graffigna MN, Oneto A et al (2004) Effects of rosiglitazone on insulin resistance, growth factors, and reproductive disturbances in women with polycystic ovary syndrome. Fertil Steril 81:624–629

    Article  CAS  PubMed  Google Scholar 

  56. Brettenthaler N, De Geyter C, Huber PR, Keller U (2004) Effect of the insulin sensitizer pioglitazone on insulin resistance, hyperandrogenism, and ovulatory dysfunction in women with polycystic ovary syndrome. J Clin Endocrinol Metab 89:3835–3840

    Article  CAS  PubMed  Google Scholar 

  57. Grover A, Yalamas MA (2011) Metformin or thiazolidinedione therapy in PCOS? Nat Rev Endocrinol 7:128–129

    Article  CAS  PubMed  Google Scholar 

  58. Aroda RV, Ciaraldi TP, Burke P et al (2008) Metabolic and hormonal changes induced by pioglitazone in polycystic ovary syndrome: a randomized, placebo-controlled clinical trial. J Clin Endocrinol Metab 94:469–476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Mather KJ, Funahashi T, Matsuzawa Y et al (2008) Diabetes prevention program adiponectin, and progression to diabetes in the diabetes prevention program. Diabetes 57:980–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Glintborg D, Hojlund K, Anderson M et al (2008) Soluble DC36 and risk markers of insulin resistance and atherosclerosis are elevated in polycystic ovary syndrome and significantly reduced during pioglitazone treatment. Diabetes Care 31:328–334

    Article  CAS  PubMed  Google Scholar 

  61. Romualdi D, Guido M, Ciampelli M et al (2003) Selective effects of pioglitazone on insulin and androgen abnormalities in normo- and hyperinsulinaemic obese patients with polycystic ovary syndrome. Hum Reprod 18:1210–1218

    Article  CAS  PubMed  Google Scholar 

  62. Asadipooya K, Kalantar-Hormozi M, Nabipour I (2012) Pioglitazone reduces central obesity in polycystic ovary syndrome women. Gynecol Endocrinol 28:16–19

    Article  CAS  PubMed  Google Scholar 

  63. Glintborg D, Hermann AP, Andersen M et al (2006) Effect of pioglitazone on glucose metabolism and luteinizing hormone secretion in women with polycystic ovary syndrome. Fertil Steril 86:385–397

    Article  CAS  PubMed  Google Scholar 

  64. Valsamakis G, Lois K, Kumar S, Mastorakos G (2013) Metabolic and other effects of pioglitazone as an add-on therapy to metformin in the treatment of polycystic ovary syndrome (PCOS). Hormones 12(3):363–378

    PubMed  Google Scholar 

  65. Sepilian V, Negamani M (2005) Effects of rosiglitazone in obese women with polycystic ovary syndrome and severe insulin resistance. J Clin Endocrinol Metab 90:60–65

    Article  CAS  PubMed  Google Scholar 

  66. Nestler JE (2008) Metformin for the treatment of the polycystic ovary syndrome. N Engl J Med 358:47–54

    Article  CAS  PubMed  Google Scholar 

  67. Palomba S, Falbo A, Zullo F, Orio F (2009) Evidence-based and potential benefits of metformin in the polycystic ovary syndrome: a comprehensive review. Endocr Rev 30(1):1–50

    Article  CAS  PubMed  Google Scholar 

  68. Jamieson MA (2002) Opinions in pediatric and adolescent gynecology. J Pediatr Adolesc Gynecol 15:109–114

    Article  Google Scholar 

  69. Bailey C, Turner R (1996) Metformin. N Engl J Med 334:574–579

    Article  CAS  PubMed  Google Scholar 

  70. Morin-Papunen LC, Koivunen RM, Ruokonen A, Martikainen HK (1998) Metformin therapy improves the menstrual pattern with minimal endocrine and metabolic effects in women with polycystic ovary syndrome. Fertil Steril 69:691–696

    Article  CAS  PubMed  Google Scholar 

  71. Musi N, Hirshmen MF, Nygren J et al (2002) Metformin increases AMP activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 51:2074–2081

    Article  CAS  PubMed  Google Scholar 

  72. Zhou G, Myers R, Li Y et al (2001) Role of AMP activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zou MH, Kirkpatrick SS, Davis BJ et al (2004) Activation of the AMP activated protein kinase by the anti-diabetic drug metformin in vivo. J Biol Chem 279:43940–43951

    Article  CAS  PubMed  Google Scholar 

  74. Elisa E, Sander V, Lucchetti CG et al (2006) The mechanisms involved in the action of metformin in regulating ovarian function in hyperandrogenized mice. Mol Hum Reprod 12:475–481

    Article  Google Scholar 

  75. Cibula D, Fanta M, Vrbikova J et al (2005) The effect of combination therapy with metformin and combined oral contraceptives (COC) versus COC alone on insulin sensitivity, hyperandrogenemia, SHBG and lipids in PCOS patients. Hum Reprod 20:180–184

    Article  CAS  PubMed  Google Scholar 

  76. Mathur R, Alexander CJ, Yano J et al (2008) Use of metformin in polycystic ovary syndrome. Am J Obstet Gynecol 199(6):596–609

    Article  CAS  PubMed  Google Scholar 

  77. Genazzani AD, Strucchi C, Luis M et al (2006) Metformin administration modulates neurosteroids secretion in non-obese amenorrhoic patients with polycystic ovary syndrome. Gynecol Endocrinol 22:36–43

    Article  CAS  PubMed  Google Scholar 

  78. Attia GR, Rainey WE, Carr BR (2001) Metformin directly inhibits androgen production in human thecal cells. Fertil Steril 76:517–524

    Article  CAS  PubMed  Google Scholar 

  79. Erickson GF, Magoffin DA, Cragun JR, Chang RJ (1990) The effects of insulin and insulin-like growth factors-I and – II on estradiol production by granulosa cells of polycystic ovaries. J Clin Endocrinol Metab 70:894–902

    Article  CAS  PubMed  Google Scholar 

  80. Catteau-Jonard S, Jasmin SP, Leclerc A et al (2008) Anti-Mullerian hormone, its receptor, FSH receptor, and androgen receptor genes are overexpressed by granulosa cells from stimulated follicles in women with polycystic ovary syndrome. J Clin Endocrinol Metab 93(11):4456–4461

    Article  CAS  PubMed  Google Scholar 

  81. Gonzalez-Fernandez R, Pena O, Hernandez J et al (2011) Patients with endometriosis and patients with poor ovarian reserve have abnormal follicle-stimulating hormone receptor signaling pathways. Fertil Steril 95(7):2373–2378

    Article  CAS  PubMed  Google Scholar 

  82. Rice S, Elia A, Jawad Z et al (2013) Metformin inhibits follicle-stimulating hormone (FSH) action in human granulosa cells: relevance to polycystic ovary syndrome. J Clin Endocrinol Metab 98(9):E1491–E1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dunn CJ, Peters DH (1995) Metformin. A review of its pharmacological properties and therapeutic use in non-insulin-dependent diabetes mellitus. Drugs 49:721–749

    Article  CAS  PubMed  Google Scholar 

  84. Palomba S, Falbo A, Orio F et al (2008) Efficacy predictors for metformin and clomiphene citrate treatment in anovulatory infertile patients with polycystic ovary syndrome. Fertil Steril. doi:10.1016/j.fertnstert.2008.03.011

    Google Scholar 

  85. Maciel GAR, Soares Junior JM, Alves L, da Motta E et al (2004) Non obese women with polycystic ovary syndrome respond better than obese women to treatment with metformin. Fertil Steril 81(2):355–360

    Article  CAS  PubMed  Google Scholar 

  86. Poretsky L, Cataldo NA, Rosenwaks Z, Giudice LC (1999) The insulin-related ovarian regulatory system in health and disease. Endocr Rev 20:535–582

    Article  CAS  PubMed  Google Scholar 

  87. Aubuchon M, Kunselman AR, Schlaff WD et al (2011) Metformin and/or clomiphene do not adversely affect liver or renal function in women with polycystic ovary syndrome. J Clin Endocrinol Metab 96(10):E1645–E1649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Preiss D, Sattar N, Harborne L et al (2008) The effects of 8 months of metformin on circulating GGT and ALT levels in obese women with polycystic ovarian syndrome. Int J Clin Pract 62:1337–1343

    Article  CAS  PubMed  Google Scholar 

  89. Palomba S, Falbo A, Russo T et al (2007) Insulin sensitivity after metformin suspension in normal-weight women with polycystic ovary syndrome. J Clin Endocrinol Metab 92:3128–3135

    Article  CAS  PubMed  Google Scholar 

  90. Aruna J, Mittal S, Kumar S et al (2004) Metformin therapy in women with polycystic ovary syndrome. Int J Gynecol Obstet 87:237–241

    Article  CAS  Google Scholar 

  91. Glueck CJ, Wang P, Fontaine R et al (2001) Metformin to restore normal menses in oligo-amenorrheic teenage girls with polycystic ovary syndrome (PCOS). J Adolesc Health 29:160–169

    Article  CAS  PubMed  Google Scholar 

  92. Velazquez EM, Mendoza S, Harmer T et al (1994) Metformin therapy in polycystic ovary syndrome reduces hyperinsulinemia, insulin resistance, hyperandrogenemia, and systolic blood pressure, while facilitating normal menses and pregnancy. Metabolism 43(5):647–654

    Article  CAS  PubMed  Google Scholar 

  93. Moghetti P, Castello R, Negri C et al (2000) Metformin effects on clinical features, endocrine and metabolic profiles, and insulin sensitivity in polycystic ovary syndrome: a randomized, double-blind, placebo-controlled 6-month trial, followed by open, long-term clinical evaluation. J Clin Endocrinol Metab 85:139–146

    CAS  PubMed  Google Scholar 

  94. Giudice LC (2006) Endometrium in PCOS: implantation and predisposition to endocrine CA. Best Pract Res Clin Endocrinol Metab 20:235–244

    Article  CAS  PubMed  Google Scholar 

  95. Palomba S, Russo T, Orio F Jr et al (2006) Uterine effects of metformin administration in anovulatory women with polycystic ovary syndrome. Hum Reprod 21:457–465

    Article  CAS  PubMed  Google Scholar 

  96. Palomba S, Russo T, Orio F Jr et al (2006) Uterine effects of clomiphene citrate in women with polycystic ovary syndrome: a prospective controlled study. Hum Reprod 21:2823–2829

    Article  CAS  PubMed  Google Scholar 

  97. Ajossa S, Guerriero S, Paoletti AM et al (2002) The antiandrogenic effect of flutamide improves uterine perfusion in women with polycystic ovary syndrome. Fertil Steril 77:1136–1140

    Article  PubMed  Google Scholar 

  98. Lupulescu A (1993) Estrogen use and cancer risk: a review. Exp Clin Endocrinol 101:204–214

    Article  CAS  PubMed  Google Scholar 

  99. Pavelic J, Radakovic B, Pavelic K (2007) Insulin-like growth factor 2 and its receptors (IGF 1R and IGF 2R/mannose 6-phosphate) in endometrial adenocarcinoma. Gynecol Oncol 105:727–735

    Article  CAS  PubMed  Google Scholar 

  100. Tan S, Hahn S, Benson S et al (2007) Metformin improves polycystic ovary syndrome symptoms irrespective of pre-treatment insulin resistance. Eur J Endocrinol 157:669–676

    Article  CAS  PubMed  Google Scholar 

  101. Legro RS, Barnhart HX, Schlaff WD et al (2007) Clomiphene, metformin, or both for infertility in the polycystic ovary syndrome. N Engl J Med 356:551–566

    Article  CAS  PubMed  Google Scholar 

  102. Nawrocka J, Starczewski A (2007) Effects of metformin treatment in women with polycystic ovary syndrome depends on insulin resistance. Gynecol Endocrinol 23:231–237

    Article  CAS  PubMed  Google Scholar 

  103. Marcondes JA, Yamashita SA, Maciel GA et al (2007) Metformin in normal-weight hirsute women with polycystic ovary syndrome with normal insulin sensitivity. Gynecol Endocrinol 23:273–278

    Article  CAS  PubMed  Google Scholar 

  104. Deplewski D, Rosenfield RL (2000) Role of hormones in pilosebaceous unit development. Endocr Rev 21:363–392

    Article  CAS  PubMed  Google Scholar 

  105. Kolodziejczyk B, Duleba AJ et al (2000) Metformin therapy decreases hyperandrogenism and hyperinsulinemia in women with polycystic ovary syndrome. Fertil Steril 73:1149–1154

    Article  CAS  PubMed  Google Scholar 

  106. Costello MF, Shrestha B, Eden J et al (2007) Metformin versus oral contraceptive pill in polycystic ovary syndrome: a Cochrane review. Hum Reprod 22:1200–1209

    Article  CAS  PubMed  Google Scholar 

  107. Morin-Papunen LC, Vauhkonen I, Koivunen RM et al (2000) Endocrine and metabolic effects of metformin versus ethinyl estradiol-cyproterone acetate in obese women with polycystic ovary syndrome: a randomized study. J Clin Endocrinol Metab 85:3161–3168

    CAS  PubMed  Google Scholar 

  108. Gambineri A, Patton L, Vaccina A et al (2006) Treatment with flutamide, metformin, and their combination added to a hypocaloric diet in overweight-obese women with polycystic ovary syndrome: a randomized, 12-month, placebo-controlled study. J Clin Endocrinol Metab 91:3970–3980

    Article  CAS  PubMed  Google Scholar 

  109. Al-Ozairi E, Quinton R, Advani A (2008) Therapeutic response to metformin in an underweight patient with polycystic ovarian syndrome. Fertil Steril 90(4):1197.e1–1197.e4

    Article  Google Scholar 

  110. Barbieri RL (2007) Clomiphene versus metformin for ovulation induction in polycystic ovary syndrome: the winner is…. J Clin Endocrinol Metab 92:3399–3401

    Article  CAS  PubMed  Google Scholar 

  111. Shaw RJ, Lamia KA, Vasquez D et al (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310:1642–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nestler JE, Jakubowicz DJ (1996) Decreases in ovarian cytochrome P-450c17 alpha activity and serum free testosterone after reduction of insulin secretion in polycystic ovary syndrome. N Engl J Med 335:617–623

    Article  CAS  PubMed  Google Scholar 

  113. Panidis D, Tziomalos K, Papadakis E et al (2013) The guidelines issued by the European Society for Human Reproduction and Embryology and the American Society for Reproductive Medicine regarding the induction of ovulation with metformin in patients with the polycystic ovary syndrome potentially require reconsideration. Hormones 12(2):192–200

    Article  PubMed  Google Scholar 

  114. Palomba S, Orio F Jr, Falbo A et al (2005) Prospective parallel randomized, double-blind, double-dummy controlled clinical trial comparing clomiphene citrate and metformin as the first-line treatment for ovulation induction in nonobese anovulatory women with polycystic ovary syndrome. J Clin Endocrinol Metab 90:4068–4074

    Article  CAS  PubMed  Google Scholar 

  115. Tang T, Lord JM, Norman RJ et al (2012) Insulin-sensitising drugs (metformin, rosiglitazone, pioglitazone, D-chiro-inositol) for women with polycystic ovary syndrome, oligo amenorrhoea and subfertility. Cochrane Database Syst Rev (5):CD003053

    Google Scholar 

  116. Creanga AA, Bradley HM, McCormick C, Wltkop CT (2008) Uses of metformin in polycystic ovary syndrome: a meta analysis. Obstet Gynecol 111:959–968

    Article  CAS  PubMed  Google Scholar 

  117. National Collaborating Centre for women’s and children’s Health/National Institute for Clinical Excellence (2004) Fertility: assessment and treatment for people with fertility problems, vol 11, Clinical guideline. RCOG Press, London

    Google Scholar 

  118. Brown J, Farquhar C, Beck J et al (2009) Clomiphene and anti-oestrogens for ovulation induction in PCOS. Cochrane Database Syst Rev (4):CD002249

    Google Scholar 

  119. Vandermolen DT, Ratts VS, Evans WS et al (2011) Metformin increases the ovulatory rate and pregnancy rate from clomiphene citrate in patients with polycystic ovary syndrome who are resistant to clomiphene citrate alone. Fertil Steril 75:310–315

    Article  Google Scholar 

  120. Kocak M, Caliskan E, Simsir C et al (2002) Metformin therapy improves ovulatory rates, cervical scores, and pregnancy rates in clomiphene citrate-resistant women with polycystic ovary syndrome. Fertil Steril 77:101–106

    Article  PubMed  Google Scholar 

  121. Malkawi HY, Qublan HS (2002) The effect of metformin plus clomiphene citrate on ovulation and pregnancy rates in clomiphene-resistant women with polycystic ovary syndrome. Saudi Med J 23:663–666

    PubMed  Google Scholar 

  122. Siebert TI, Kruger TF, Steyn DW, Nosarka S (2006) Is the addition of metformin efficacious in the treatment of clomiphene citrate-resistant patients with polycystic ovary syndrome? A structured literature review. Fertil Steril 86:1432–1437

    Article  CAS  PubMed  Google Scholar 

  123. La Marca A, Morgante G, Ciotta L et al (1999) Effects of metformin on adrenal steroidogenesis in women with polycystic ovary syndrome. Fertil Steril 72:985–989

    Article  PubMed  Google Scholar 

  124. Billa E, Kapolla N, Nicopoulou SC et al (2009) Metformin administration was associated with a modification of LH, prolactin and insulin secretion dynamics in women with polycystic ovarian syndrome. Gynecol Endocrinol 25:427–434

    Article  CAS  PubMed  Google Scholar 

  125. Palomba S, Falbo A, Orio F, Zullo F (2008) Insulin sensitizing agents and reproductive function in polycystic ovary syndrome patients. Curr Opin Obstet Gynecol 20:364–373

    Article  PubMed  Google Scholar 

  126. Fulghesu AM, Villa P, Pavone V et al (1997) The impact of insulin secretion on the ovarian response to exogenous gonadotropins in polycystic ovary syndrome. J Clin Endocrinol Metab 82:644–648

    Article  CAS  PubMed  Google Scholar 

  127. Palomba S, Falbo A, La Sala GB (2014) Metformin and gonadotropins for ovulation induction in patients with polycystic ovary syndrome: a systematic review with meta-analysis of randomized controlled trials. Reprod Biol Endocrinol 12:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. La Marca A, Morgante G, Palumbo M et al (2002) Insulin-lowering treatment reduces aromatase activity in response to follicle-stimulating hormone in women with polycystic ovary syndrome. Fertil Steril 78(6):1234–1239

    Article  PubMed  Google Scholar 

  129. Glueck CJ, Wang P, Goldenberg N, Sieve-Smith L (2002) Pregnancy outcomes among women with polycystic ovary syndrome with metformin. Hum Reprod 17:2858–2864

    Article  CAS  PubMed  Google Scholar 

  130. Lord JM, Flight IH, Norman RJ (2003) Insulin-sensitizing drugs (metformin, troglitazone, rosiglitazone, pioglitazone, D-chiro inositol) for polycystic ovary syndrome. Cochrane Database Syst Rev (3):CD003053

    Google Scholar 

  131. Glueck CJ, Phillips H, Cameron D et al (2001) Continuing metformin throughout pregnancy in women with polycystic ovary syndrome appears to safely reduce first-trimester spontaneous abortion: a pilot study. Fertil Steril 75:46–52

    Article  CAS  PubMed  Google Scholar 

  132. Palomba S, Orio F Jr, Falbo A et al (2005) Plasminogen activator inhibitor 1 and miscarriage after metformin treatment and laparoscopic ovarian drilling in patients with polycystic ovary syndrome. Fertil Steril 84:761–765

    Article  CAS  PubMed  Google Scholar 

  133. Schachter M, Raziel A, Friedler S et al (2003) Insulin resistance in patients with polycystic ovary syndrome is associated with elevated plasma homocysteine. Hum Reprod 18:721–727

    Article  CAS  PubMed  Google Scholar 

  134. Diamanti-Kandarakis E, Piperi C et al (2005) Increased levels of serum advanced glycation end-products in women with polycystic ovary syndrome. Clin Endocrinol (Oxf) 62:37–43

    Article  CAS  Google Scholar 

  135. Orio F Jr, Palomba S, Cascella T (2005) Improvement in endothelial structure and function after metformin treatment in young normal-weight women with polycystic ovary syndrome: results of a 6-month study. J Clin Endocrinol Metab 90:6072–6076

    Article  CAS  PubMed  Google Scholar 

  136. Jakubowicz DJ, Seppala M et al (2001) Insulin reduction with metformin increases luteal phase serum glycodelin and insulin-like growth factor-binding protein 1 concentrations and enhances uterine vascularity and blood flow in the polycystic ovary syndrome. J Clin Endocrinol Metab 86:1126–1133

    CAS  PubMed  Google Scholar 

  137. Eng GS, Sheridan RA, Wyman A et al (2007) AMP kinase activation increases glucose uptake, decreases apoptosis, and improves pregnancy outcome in embryos exposed to high IGF-I concentrations. Diabetes 65:2228–2234

    Article  CAS  Google Scholar 

  138. Chi MM, Schlein AL, Moley KH (2000) High insulin-like growth factor 1 (IGF-1) and insulin concentrations trigger apoptosis in the mouse blastocyst via down-regulation of the IGF-1 receptor. Endocrinology 141:1784–1792

    Google Scholar 

  139. Samoto T, Maruo T, Matsuo H et al (1993) Altered expression of insulin and insulin-like growth factor-I receptors in follicular and stromal compartments of polycystic ovaries. Endocr J 40:413–424

    Article  CAS  PubMed  Google Scholar 

  140. Palomba S, Pasquali R, Orio F, Nestler JE (2008) Clomiphene citrate, metformin or both as first-step approach in treating anovulatory infertility in patients with polycystic ovary syndrome (PCOS): a systematic review and meta-analysis. Clin Endocrinol (Oxf). doi:10.1111/j.1365-2265.2008.03369.x

    Google Scholar 

  141. Moll E, Bossuyt PMM, Korevaar JC et al (2006) Effect of clomiphene citrate plus metformin and clomiphene citrate plus placebo on induction of ovulation in women with newly diagnosed polycystic ovary syndrome: randomized double blind clinical trial. BMJ 332:1461–1462

    Article  CAS  Google Scholar 

  142. Nanovskaya T, Nekhayeva I, Patrikeeva S et al (2006) Transfer of metformin across the dually perfused human placental lobule. Am J Obstet Gynecol 195:1081–1085

    Article  CAS  PubMed  Google Scholar 

  143. Kovo M, Haroutiunian S, Feldman N et al (2008) Determination of metformin transfer across the human placenta using a dually perfused ex vivo placental cotyledon model. Eur J Obstet Gynecol Reprod Biol 136:29–33

    Article  CAS  PubMed  Google Scholar 

  144. Vanky E, Zahlsen K, Spigsett O et al (2005) Placental passage of metformin in women with polycystic ovary syndrome. Fertil Steril 83:1575–1578

    Article  PubMed  Google Scholar 

  145. Hague WM, Daroven PM, McIntyre D et al (2004) Metformin crosses the placenta: a modulator for fetal insulin resistance? BMJ 327:880–881

    Google Scholar 

  146. Charles B, Norris R, Xiao X et al (2006) Population pharmacokinetics of metformin in late pregnancy. Ther Drug Monit 28:67–72

    Article  CAS  PubMed  Google Scholar 

  147. Stowers J, Sutherland H (1975) The use of sulfonylureas, biguanides and insulin in pregnancy. In: Sutherland H, Stowers J (eds) Carbohydrate metabolism in pregnancy and the newborn. Churchill Livingstone, Edinburgh, pp 205–220

    Google Scholar 

  148. Carlsen SM, Vanky E (2010) Metformin influence on hormone levels at birth, in PCOS mothers and their newborns. Hum Reprod 25(3):786–790

    Article  CAS  PubMed  Google Scholar 

  149. Petitti DB (2003) Combination estrogen-progestin oral contraceptives. N Engl J Med 349:1443–1450

    Article  CAS  PubMed  Google Scholar 

  150. Gilbert C, Valois M, Koren G (2006) Pregnancy outcome after first-trimester exposure to metformin: a meta-analysis. Fertil Steril 86:658–663

    Article  CAS  PubMed  Google Scholar 

  151. Hellmuth E, Damm P, Molsted-Pedersen L (2000) Oral hypoglycemic agents in 118 diabetic pregnancies. Diabet Med 17:507–511

    Article  CAS  PubMed  Google Scholar 

  152. Diamanti-Kandarakis E, Christakou CD et al (2010) Metformin: an old medication of new fashion: evolving new molecular mechanisms and clinical implications in polycystic ovary syndrome. Eur J Endocrinol 162:193–212

    Article  CAS  PubMed  Google Scholar 

  153. Glueck CJ, Wang P, Kobayashi S et al (2002) Metformin therapy throughout pregnancy reduces the development of gestational diabetes in women with polycystic ovary syndrome. Fertil Steril 77:520–525

    Article  CAS  PubMed  Google Scholar 

  154. Norman RJ, Wang JX, Hague W (2004) Should we continue or stop insulin sensitizing drugs during pregnancy? Curr Opin Obstet Gynecol 16:245–250

    Article  PubMed  Google Scholar 

  155. Nawaz FH, Khalid R, Naru T, Rizvi J (2008) Does continuous use of metformin throughout pregnancy improve pregnancy outcomes in women with polycystic ovarian syndrome? J Obstet Gynaecol Res 34(5):832–837

    Article  PubMed  Google Scholar 

  156. Glueck CJ, Goldenberg N, Wang P et al (2004) Metformin during pregnancy reduces insulin, insulin resistance, insulin secretion, weight, testosterone and development of gestational diabetes: prospective longitudinal assessment of women with polycystic ovary syndrome from preconception throughout pregnancy. Hum Reprod 19:510–521

    Article  CAS  PubMed  Google Scholar 

  157. Lautatzis ME, Goulis DG, Vrontakis M (2013) Efficacy and safety of metformin during pregnancy in women with gestational diabetes mellitus or polycystic ovary syndrome: a systematic review. Metab Clin Exp 62:1522–1534

    Article  CAS  PubMed  Google Scholar 

  158. Niromanesh S, Alavi A, Sharbaf FR et al (2012) Metformin compared with insulin in the management of gestational diabetes mellitus: a randomized clinical trial. Diabetes Res Clin Pract 98(3):422–429

    Article  CAS  PubMed  Google Scholar 

  159. Sibai B, Dekker G (2005) Pre-eclampsia. Lancet 365:785–799

    Article  PubMed  Google Scholar 

  160. Forsbach-Sanchez G, Tamez-Perez HE, Vazquez-Lara J (2005) Diabetes and pregnancy. Arch Med Res 36:291–299

    Article  CAS  PubMed  Google Scholar 

  161. Maymone AC, Baillargeon JP, Menard J et al (2011) Oral hypoglycemic agents for gestational diabetes mellitus? Expert Opin Drug Saf 10(2):227–238

    Article  CAS  PubMed  Google Scholar 

  162. Gardiner SJ, Begg EJ, Kirkpatrick CM, Buckham RB (2004) Metformin therapy and diabetes in pregnancy. Med J Aust 181:174–175

    PubMed  Google Scholar 

  163. Hale TW, Kristensen JH, Hackett LP et al (2002) Transfer of metformin into human milk. Diabetologia 45:1509–1514

    Article  CAS  PubMed  Google Scholar 

  164. Briggs GG, Ambrose PJ, Nageotte MP et al (2005) Excretion of metformin into breast milk and the effect on nursing infants. Obstet Gynecol 105:1437–1441

    Article  CAS  PubMed  Google Scholar 

  165. Gardiner DJ, Kirkpatrick CM, Begg EJ et al (2003) Transfer of metformin into human milk. Clin Pharmacol Ther 73:71–77

    Article  CAS  PubMed  Google Scholar 

  166. Baillargeon JP, Jakubowicz DJ, Iuorno MJ et al (2004) Effects of metformin and rosiglitazone, alone and in combination, in nonobese women with polycystic ovary syndrome and normal indices of insulin sensitivity. Fertil Steril 82:893–902

    Article  CAS  PubMed  Google Scholar 

  167. Sahin I, Serter R, Karakurt F et al (2004) Metformin versus flutamide in the treatment of metabolic consequences of non-obese young women with polycystic ovary syndrome: a randomized prospective study. Gynecol Endocrinol 19:115–124

    Article  CAS  PubMed  Google Scholar 

  168. Yilmaz M, Biri A, Karakoc A et al (2005) The effects of rosiglitazone and metformin on insulin resistance and serum androgen levels in obese and lean patients with polycystic ovary syndrome. J Endocrinol Invest 28:1003–1008

    Article  CAS  PubMed  Google Scholar 

  169. Ortega-Gonzalez C, Luna S, Hernandez L et al (2005) Responses of serum androgen and insulin resistance to metformin and pioglitazone in obese, insulin-resistant women with polycystic ovary syndrome. J Clin Endocrinol Metab 90:1360–1365

    Article  CAS  PubMed  Google Scholar 

  170. Harborne LR, Sattar N, Norman JE et al (2005) Metformin and weight loss in obese women with polycystic ovary syndrome: comparison of doses. J Clin Endocrinol Metab 90:4593–4598

    Article  CAS  PubMed  Google Scholar 

  171. Crave JC, Fimbel S, Lejeune H et al (1995) Effects of diet and metformin administration on sex hormone-binding globulin, androgens, and insulin in hirsute and obese women. J Clin Endocrinol Metab 80:2057–2062

    CAS  PubMed  Google Scholar 

  172. Kiddy DS, Hamilton-Fairley D, Bush A et al (1992) Improvement in endocrine and ovarian function during dietary treatment of obese women with polycystic ovary syndrome. Clin Endocrinol (Oxf) 36:105–111

    Article  CAS  Google Scholar 

  173. Glueck CJ, Lang JE, Tracy T et al (1999) Contribution of fasting hyperinsulinemia to prediction of atherosclerotic disease status in 293 hyperlipidemic patients. Metabolism 48:1437–1444

    Article  CAS  PubMed  Google Scholar 

  174. Pasquali R, Gambineri A, Biscotti D et al (2000) Effect of long-term treatment with metformin added to hypocaloric diet on body composition, fat distribution and androgen and insulin levels in abdominally obese women with and without the polycystic ovary syndrome. J Clin Endocrinol Metab 85:2767–2774

    Article  CAS  PubMed  Google Scholar 

  175. Christ-Crain M, Kola B, Lolli F et al (2008) AMP-activated protein kinase mediates glucocorticoid-induced metabolic changes: a novel mechanism in Cushing’s syndrome. FASEB J 22:1672–1683

    Article  CAS  PubMed  Google Scholar 

  176. Fukuhara A, Matsuda M, Nishizawa M et al (2005) Visfatin: a protein secreted by visceral fat that mimics the effect of insulin. Science 307:426–430

    Article  CAS  PubMed  Google Scholar 

  177. Ozkaya M, Cakal E, Ustun Y et al (2010) Effect of metformin on serum visfatin levels in patients with polycystic ovary syndrome. Fertil Steril 93(3):880–884

    Article  PubMed  CAS  Google Scholar 

  178. Yasmin E, Glanville J, Barth J, Balen A (2011) Effect of dose escalation of metformin on clinical features, insulin sensitivity and androgen profile in polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol 156:67–71

    Article  CAS  PubMed  Google Scholar 

  179. Bruno RV, Pinto de Avila MA, Neves FB et al (2007) Comparison of two doses of metformin (2.5 and 1.5 g/day) for the treatment of polycystic ovary syndrome and their effect on body mass index and waist circumference. Fertil Steril 88(2):510–512

    Article  CAS  PubMed  Google Scholar 

  180. Buchanan TA, Xiang AH, Peters RK et al (2002) Preservation of pancreatic beta-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk Hispanic women. Diabetes 51:2796–2803

    Article  CAS  PubMed  Google Scholar 

  181. Salley KE, Wickham EP, Cheang KI et al (2007) Glucose intolerance in polycystic ovary syndrome: a position statement of the Androgen Excess Society. J Clin Endocrinol Metab 92:4546–4556

    Article  CAS  PubMed  Google Scholar 

  182. Meyer C, McGrath BP, Teede HJ (2007) Effects of medical therapy on insulin resistance and the cardiovascular system in polycystic ovary syndrome. Diabetes Care 30:471–478

    Article  CAS  PubMed  Google Scholar 

  183. Zimmermann S, Philips RA, Dunaif A et al (1992) Polycystic ovary syndrome: lack of hypertension despite profound insulin resistance. J Clin Endocrinol Metab 75:508–513

    CAS  PubMed  Google Scholar 

  184. Elting MW, Korsen TJM et al (2001) Prevalence of diabetes mellitus, hypertension and cardiac complaints in a follow-up study of a Dutch PCOS population. Hum Reprod 16:556–560

    Article  CAS  PubMed  Google Scholar 

  185. Topcu S, Tok D, Caliskan M et al (2006) Metformin therapy improves coronary microvascular function in patients with polycystic ovary syndrome and insulin resistance. Clin Endocrinol (Oxf) 65:75–80

    Article  CAS  Google Scholar 

  186. Lord JM, Flight IH, Norman RJ (2003) Metformin in polycystic ovary syndrome: systematic review and meta-analysis. BMJ 327:951–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Glueck CJ, Wang P, Fontaine R et al (1999) Metformin-induced resumption of normal menses in 39 of 43 (91%) previously amenorrheic women with polycystic ovary syndrome. Metabolism 48:511–519

    Article  CAS  PubMed  Google Scholar 

  188. Mather KJ, Kwan F, Corenblum B (2000) Hyperinsulinemia in polycystic ovary syndrome correlates with increased cardiovascular risk independent of obesity. Fertil Steril 73:150–156

    Article  CAS  PubMed  Google Scholar 

  189. Cibula D, Cifkova R, Fanta M et al (2000) Increased risk of non-insulin dependent diabetes mellitus, arterial hypertension, and coronary artery disease in perimenopausal women with a history of the polycystic ovary syndrome. Hum Reprod 15:787–789

    Article  Google Scholar 

  190. Amowitz LL, Sobel BE (1999) Cardiovascular consequences of polycystic ovary syndrome. Endocrinol Metab Clin North Am 28:439–458

    Article  CAS  PubMed  Google Scholar 

  191. Birdsall MA, Farquhar CM, White HD (1997) Association between polycystic ovaries and extent of coronary artery disease in women having cardiac catheterization. Ann Intern Med 126:32–35

    Article  CAS  PubMed  Google Scholar 

  192. Pasquali R, Filicori M (1998) Insulin sensitizing agents and polycystic ovary syndrome. Eur J Endocrinol 138:253–254

    Article  CAS  PubMed  Google Scholar 

  193. Rizzo M, Berneis K, Carmina E, Rini GB (2008) How should we manage atherogenic dyslipidemia in women with polycystic ovary syndrome? Am J Obstet Gynecol 198:28.e1–28.e5

    Article  Google Scholar 

  194. Cheang KI, Huszar JM, Best AM et al (2009) Long-term effect of metformin on metabolic parameters in the polycystic ovary syndrome. Diab Vasc Dis Res 6(2):110–119

    Article  PubMed  PubMed Central  Google Scholar 

  195. Glueck CJ, Aregawi D, Agloria M et al (2006) Sustainability of 8% weight loss, reduction of insulin resistance, and amelioration of atherogenic-metabolic risk factors over 4 years by metformin-diet in women with polycystic ovary syndrome. Metabolism 55:1582–1589

    Article  CAS  PubMed  Google Scholar 

  196. Morin-Papunen LC, Rautio K, Ruokonen A et al (2003) Metformin reduces serum C-reactive protein levels in women with polycystic ovary syndrome. J Clin Endocrinol Metab 88:4649–4654

    Article  CAS  PubMed  Google Scholar 

  197. Isoda K, Young JL, Zirlik A et al (2006) Metformin inhibits proinflammatory responses and nuclear factor-kB in human vascular wall cells. Arterioscler Thromb Vasc Biol 26:611–617

    Article  CAS  PubMed  Google Scholar 

  198. Shimbo D, Grahame-Clarke C, Miyake Y et al (2007) The association between endothelial dysfunction and cardiovascular outcomes in a population-based multi-ethnic cohort. Atherosclerosis 192:197–203

    Article  CAS  PubMed  Google Scholar 

  199. Rossi R, Nuzzo A, Origliani G, Modena MG (2008) Prognostic role of flow-mediated dilation and cardiac risk factors in post-menopausal women. J Am Coll Cardiol 51:997–1002

    Article  PubMed  Google Scholar 

  200. Naka KK, Kalantaridou SN, Kravariti M et al (2011) Effect of the insulin sensitizers metformin and pioglitazone on endothelial function in young women with polycystic ovary syndrome: a prospective randomized study. Fertil Steril 95(1):203–209

    Article  CAS  PubMed  Google Scholar 

  201. Ozgurtas T, Oktenli C, Dede M et al (2008) Metformin and oral contraceptive treatments reduced circulating asymmetric dimethylarginine (ADMA) levels in patients with polycystic ovary syndrome (PCOS). Atherosclerosis 200:336–344

    Article  CAS  PubMed  Google Scholar 

  202. Teede HJ, Meyer C, Hutchison SK et al (2010) Endothelial function and insulin resistance in polycystic ovary syndrome: the effects of medical therapy. Fertil Steril 93(1):184–209

    Article  CAS  PubMed  Google Scholar 

  203. Banfi C, Eriksson P, Giandomenico G et al (2001) Transcriptional regulation of plasminogen activator inhibitor type 1 gene by insulin: insights into the signaling pathway. Diabetes 50:1522–1530

    Article  CAS  PubMed  Google Scholar 

  204. Kooistra T, Bosma PJ, Tons HA et al (1989) Plasminogen activator inhibitor 1: biosynthesis and mRNA level are increased by insulin in cultured human hepatocytes. Thromb Haemost 62:723–728

    CAS  PubMed  Google Scholar 

  205. Schneider DJ, Nordt TK, Sobel BE (1992) Stimulation by proinsulin of expression of plasminogen activator inhibitor type-I in endothelial cells. Diabetes 41:890–895

    Article  CAS  PubMed  Google Scholar 

  206. Morteza Taghavi S, Rokni H, Fatemi S (2011) Metformin decreases thyrotropin in overweight women with polycystic ovarian syndrome and hypothyroidism. Diab Vasc Dis Res 8(1):47–48

    Article  CAS  PubMed  Google Scholar 

  207. Janssen OE, Mehlmauer N, Hahn S et al (2004) High prevalence of autoimmune thyroiditis in patients with polycystic ovary syndrome. Eur J Endocrinol 150:363–369

    Article  CAS  PubMed  Google Scholar 

  208. Vigersky RA, Filmore-Nassar A, Glass AR (2006) Thyrotropin suppression by metformin. J Clin Endocrinol Metab 91:225–227

    Article  CAS  PubMed  Google Scholar 

  209. Cappelli C, Rotondi M, Pirola I et al (2009) TSH-lowering effect of metformin in type 2 diabetes. Diabetes Care 32:1589–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Ortega-Gonzalez C, Cardoza L, Coutino B et al (2005) Insulin sensitizing drugs increase the endogenous dopaminergic tone in obese insulin-resistant women with polycystic ovary syndrome. J Endocrinol 184:233–239

    Article  CAS  PubMed  Google Scholar 

  211. Quigley ME, Rakoff JS, Yen SSC (1981) Increased luteinizing hormone sensitivity to dopamine inhibition in polycystic ovary syndrome. J Clin Endocrinol Metab 52:231–234

    Article  CAS  PubMed  Google Scholar 

  212. Nestler JE, Jakubowicz DJ (1997) Lean women with polycystic ovary syndrome respond to insulin reduction with decreases in ovarian P450c17α activity and serum androgens. J Clin Endocrinol Metab 82:4075–4079

    CAS  PubMed  Google Scholar 

  213. Iuorno M, Nestler J (1999) The polycystic ovary syndrome: treatment with insulin sensitizing agents. Diabetes Obes Metab 1:127–136

    Article  CAS  PubMed  Google Scholar 

  214. Sahin Y, Unluhizarcit K, Yilmazsoy A et al (2007) The effects of metformin on metabolic and cardiovascular risk factors in nonobese women with polycystic ovary syndrome. Clin Endocrinol 67:904–908

    Article  CAS  Google Scholar 

  215. Kjotrod SB, Carlsen SM, Rasmussen PE et al (2011) Use of metformin before and during assisted reproductive technology in non-obese young infertile women with polycystic ovary syndrome: a prospective, randomized, double-blind, multi-centre study. Hum Reprod 26(8):2045–2053

    Article  CAS  PubMed  Google Scholar 

  216. Trent M, Rich M, Austin SB et al (2001) Society for adolescent medicine: quality of life in girls with polycystic ovary syndrome. J Adolesc Health 28(2):99

    Google Scholar 

  217. Pasquali R, Antenucci D, Casimirri F et al (1989) Clinical and hormonal characteristics of obese amenorrheic hyperandrogenic women before and after weight loss. J Clin Endocrinol Metab 68(1):173

    Article  CAS  PubMed  Google Scholar 

  218. Hsia Y, Dawoud D, Sutcliffe AG et al (2011) Unlicensed use of metformin in children and adolescents in the UK. Br J Clin Pharmacol 73(1):135–139

    Article  CAS  Google Scholar 

  219. Ibanez L, Ferrer A, Ong K et al (2004) Insulin sensitization early after menarche prevents progression from precocious pubarche to polycystic ovary syndrome. J Pediatr 144:23–29

    Article  PubMed  Google Scholar 

  220. Bredella MA, McManust S, Misra M (2013) Impact of metformin monotherapy versus metformin with oestrogen-progesterone on lipids in adolescent girls with polycystic ovarian syndrome. Clin Endocrinol 79:199–203

    Article  CAS  Google Scholar 

  221. Geller DH, Pacaud D, Gordon CM et al (2011) State of the art review: emerging therapies: the use of insulin sensitizers in the treatment of adolescents with polycystic ovary syndrome (PCOS). Int J Pediatr Endocrinol 2011:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Givens JR, Anderse RN, Wiser WL et al (1974) Dynamics of suppression and recovery of plasma FSH, LH, androstenedione and testosterone in polycystic ovarian disease using an oral contraceptive. J Clin Endocrinol Metab 38:727–735

    Article  CAS  PubMed  Google Scholar 

  223. Mastorakos G, Koliopoulos C, Creatsas G (2002) Androgen and lipid profiles in adolescents with polycystic ovary syndrome who were treated with two forms of combined oral contraceptives. Fertil Steril 77:919–927

    Article  PubMed  Google Scholar 

  224. Mastorakos G, Koliopoulos C, Deligeoroglou E et al (2006) Effects of two forms of combined oral contraceptives on carbohydrate metabolism in adolescents with polycystic ovary syndrome. Fertil Steril 85:420–427

    Article  CAS  PubMed  Google Scholar 

  225. Ibanez L, Lopez-Bermejo A, del Rio L et al (2007) Combined low-dose pioglitazone, flutamide, and metformin for women with androgen excess. J Clin Endocrinol Metab 92:1710–1714

    Article  CAS  PubMed  Google Scholar 

  226. Glueck CJ, Moreira A, Goldenberg N et al (2003) Pioglitazone and metformin in obese women with polycystic ovary syndrome not optimally responsive to metformin. Hum Reprod 18:1618–1625

    Article  CAS  PubMed  Google Scholar 

  227. Farnier M, Davignon J (1998) Current and future treatment of hyperlipidemia: the role of statins. Am J Cardiol 82:3J–10J

    Article  CAS  PubMed  Google Scholar 

  228. Scandinavian Simvastatin Survival Study (4S) (1994) Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease. Lancet 344:1383–1389

    Google Scholar 

  229. Clearfield M (2003) Evolution of cholesterol management therapies: exploiting potential for further improvement. Am J Ther 10:275–281

    Article  PubMed  Google Scholar 

  230. McFarlane SI, Muniyappa R, Francisco R, Sowers JR (2002) Pleiotropic effects of statins: lipid reduction and beyond. J Clin Endocrinol Metab 87:1451–1458

    Article  CAS  PubMed  Google Scholar 

  231. Banaszewska B, Pawelczyk L, Spaczynski R et al (2011) Effects of simvastatin and metformin on polycystic ovary syndrome after six months of treatment. J Clin Endocrinol Metab 96(11):3493–3501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Gao L, Zhao FL, Li SC (2012) Statin is a reasonable treatment option for patients with polycystic ovary syndrome: a meta-analysis of randomized controlled trials. Exp Clin Endocrinol Diabetes 120:367–375

    Article  CAS  PubMed  Google Scholar 

  233. Kazerooni T, Shojaei-Baghini S, Dehbashi S et al (2010) Effects of metformin plus simvastatin on polycystic ovary syndrome: a prospective, randomized, double-blind, placebo-controlled study. Fertil Steril 94(6):2208–2213

    Article  CAS  PubMed  Google Scholar 

  234. Izquierdo D, Foyouzi N, Kwintkiewicz J et al (2004) Mevastatin inhibits ovarian theca-interstitial cell proliferation and steroidogenesis. Fertil Steril 82(Suppl 3):1193–1197

    Article  CAS  PubMed  Google Scholar 

  235. Wu CH, Chen YF, Wan JY et al (2002) Mutant K-ras oncogene regulates steroidogenesis of normal human adrenocortical cells by the RAF-MEK-MAPK pathway. Br J Cancer 87:1000–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Wu CH, Lee SC, Chiu HH et al (2002) Morphologic change and elevation of cortisol secretion in cultured human normal adrenocortical cells caused by mutant p21K-ras protein. DNA Cell Biol 21:21–29

    Article  CAS  PubMed  Google Scholar 

  237. Rzepczynska IJ, Piotrowski PC, Wong DH et al (2009) Role of isoprenylation in simvastatin-induced inhibition of ovarian theca-interstitial growth in the rat. Biol Reprod 81:850–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Bozdag G, Yildiz BO (2013) Interventions for the metabolic dysfunction in polycystic ovary syndrome. Steroids 78:777–781

    Article  CAS  PubMed  Google Scholar 

  239. Holub BJ (1986) Metabolism and function of myo-inositol and inositol phospholipids. Annu Rev Nutr 6:563–597

    Article  CAS  PubMed  Google Scholar 

  240. Schlemmer U, Frolich W, Prieto RM, Grases F (2009) Phytate in foods and significance for humans: food sources, intake, processing, bioavailability, protective role and analysis. Mol Nutr Food Res 53:S330–S375

    Article  PubMed  Google Scholar 

  241. Croze ML, Soulage CO (2013) Potential role and therapeutic interests of myo-inositol in metabolic disease. Biochimie 95:1811–1827

    Article  CAS  PubMed  Google Scholar 

  242. Eagle H, Oyama VI, Levy M, Freeman A (1956) Myo-inositol as an essential growth factor for normal and malignant human cells in tissue culture. Science 123:845–847

    Article  CAS  PubMed  Google Scholar 

  243. Chau JFL, Lee MK, Law JWS et al (2005) Sodium/myo inositol cotransporter-1 is essential for the development and function of the peripheral nerves. FASEB 19:1887–1889

    CAS  Google Scholar 

  244. Dai Z, Chung SK, Miao D et al (2011) Sodium/myoinositol cotransporter 1 and myo-inositol are essential for osteogenesis and bone formation. J Bone Miner Res 26:582–590

    Article  CAS  PubMed  Google Scholar 

  245. Deranieh RM, Greenberg ML (2009) Cellular consequences of inositol depletion. Biochem Soc Trans 37:1099–1103

    Article  CAS  PubMed  Google Scholar 

  246. Jones DR, Varela-Niero I (1999) Diabetes and the role of inositol-containing lipids in insulin signaling. Mol Med 5:505–514

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Larner J, Brautigan DL, Thorner MO (2010) D-Chiro-inositol glycans in insulin signaling and insulin resistance. Mol Med 16:543–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Saltiel AR (1990) Second messengers of insulin action. Diabetes Care 13:244–256

    Article  CAS  PubMed  Google Scholar 

  249. Pak Y, Paule CR, Bao YD et al (1993) Insulin stimulates the biosynthesis of chiro-inositol-containing phospholipids in a rat fibroblast line expressing the human insulin receptor. Proc Natl Acad Sci U S A 90:7759–7763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Chang HG (2011) Mechanisms underlying the abnormal inositol metabolisms in diabetes mellitus. Thesis, Research Space@Auckland

    Google Scholar 

  251. Asplin I, Galasko G, Larner J (1993) Chiro-inositol deficiency and insulin resistance: a comparison of the chiro-inositol- and the myo-inositol-containing insulin mediators isolated from urine, hemodialysate, and muscle of control and type II diabetic subjects. Proc Natl Acad Sci 90(13):5924–5928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Colazingari S, Treglia M, Najjar R, Bevilacqua A (2013) The combined therapy myo-inositol plus D-chiro-inositol, rather than D-chiro-inositol, is able to improve IVF outcomes: results from a randomized controlled trial. Arch Gynecol Obstet 288:1405–1411

    Article  CAS  PubMed  Google Scholar 

  253. Larner J (2002) D-chiro-inositol – its functional role in insulin action and its deficit in insulin resistance. Int J Exp Diabetes Res 3(1):47–60

    Article  PubMed  PubMed Central  Google Scholar 

  254. Larner J, Craig JW (1996) Urinary myo-inositol-to-chiro-inositol ratios and insulin resistance. Diabetes Care 19:76–78

    Article  CAS  PubMed  Google Scholar 

  255. Pak Y, Huang LC, Lilley KJ, Larner J (1992) In vivo conversion of [3H]myo-inositol to [3H]chiroinositol in rat tissue. J Biol Chem 267:16904–16910

    CAS  PubMed  Google Scholar 

  256. Baillargeon J-P, Diamanti-Kandarakis E, Nestler JE et al (2006) Altered D-chiro-inositol urinary clearance in women with polycystic ovary syndrome. Diabetes Care 29(2):300–305

    Google Scholar 

  257. Baillargeon JP, Iuorno MJ, Apridonidze T, Nestler J (2010) Uncoupling between insulin and release of a D-chiro-inositol-containing inositolphosphoglycan mediator of insulin action in obese women with polycystic ovary syndrome. Metab Syndr Relat Disord 8(2):127–135

    Article  CAS  PubMed  Google Scholar 

  258. Nestler JE, Jakubowicz DJ, Baillargeon JP et al (1999) Ovulatory and metabolic effects of D-chiro-inositol in the polycystic ovary syndrome. N Engl J Med 340:1314–1320

    Article  CAS  PubMed  Google Scholar 

  259. Iuorno MJ, Jakubowicz DJ, Baillargeon JP et al (2002) Effects of D-chiro-inositol in lean women with the polycystic ovary syndrome. Endocr Pract 8:417–423

    Article  PubMed  Google Scholar 

  260. Gerli S, Mignosa M, Di Renzo GC (2003) Effects of inositol on ovarian function and metabolic factors in women with PCOS: a randomized double blind placebo-controlled trial. Eur Rev Med Pharmacol Sci 7:151–159

    CAS  PubMed  Google Scholar 

  261. Papaleo E, Unfer V, Baillargeon JP et al (2009) Myo-inositol may improve oocyte quality in intracytoplasmic sperm injection cycles. A prospective, controlled, randomized trial. Fertil Steril 91:1750–1754

    Article  CAS  PubMed  Google Scholar 

  262. Papaleo E, Unfer V, Baillargeon JP et al (2007) Myo-inositol in patients with polycystic ovary syndrome: a novel method for ovulation induction. Gynecol Endocrinol 23:700–703

    Article  CAS  PubMed  Google Scholar 

  263. Cheang KI, Baillargeon JP, Essah PA et al (2008) Insulin-stimulated release of D-chiro-inositol-containing inositolphosphoglycan mediator correlates with insulin sensitivity in women with polycystic ovary syndrome. Metab Clin Exp 57:1390–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Genazzani AD, Prati A, Santagni S et al (2012) Differential insulin response to myo-inositol administration in obese polycystic ovary syndrome patients. Gynecol Endocrinol 28(12):969–973

    Article  CAS  PubMed  Google Scholar 

  265. Genazzani AD, Lanzoni C, Ricchieri F, Jasonni V (2008) Myo-inositol administration positively affects hyperinsulinemia and hormonal parameters in overweight patients with polycystic ovary syndrome. Gynecol Endocrinol 24(3):139–144

    Article  CAS  PubMed  Google Scholar 

  266. Zacchè M, Caputo L, Filippis S et al (2009) Efficacy of myo-inositol in the treatment of cutaneous disorders in young women with polycystic ovary syndrome. Gynecol Endocrinol 25(8):508–513

    Article  PubMed  CAS  Google Scholar 

  267. Pizzo A, Laganà AS, Barbaro L (2014) Comparison between effects of myo-inositol and D-chiro-inositol on ovarian function and metabolic factors in women with PCOS. Gynecol Endocrinol 30(3):205–208

    Article  CAS  PubMed  Google Scholar 

  268. Costantino D, Minozzi G, Minozzi F, Guaraldi C (2009) Metabolic and hormonal effects of myo-inositol in women with polycystic ovary syndrome: a double blind trial. Eur Rev Med Pharmacol Sci 13:105–110

    CAS  PubMed  Google Scholar 

  269. Gerli S, Papaleo E, Ferrari A, Di Renzo GC (2007) Randomized, double blind placebo-controlled trial: effects of myo-inositol on ovarian function and metabolic factors in women with PCOS. Eur Rev Med Pharmacol Sci 11(5):347–354

    CAS  PubMed  Google Scholar 

  270. Ciotta L, Stracquadanio M, Formuso C et al (2012) D-Chiro-inositol treatment in patients with polycystic ovary syndrome. G Ital Ost Ginecol 34(1):145–148

    Google Scholar 

  271. Stracquadanio M, Formuso C, Palumbo MA, Ciotta L (2013) PCOS treatment with an oral contraceptive containing Drospirenone, alone or in association with D-chiro-inositol. G Ital Ost Ginecol 35(4):635–640

    Google Scholar 

  272. Carlomagno G, Unfer V (2011) Inositol safety: clinical evidences. Eur Rev Med Pharmacol Sci 15:931–936

    CAS  PubMed  Google Scholar 

  273. D’Anna R, Di Benedetto V, Rizzo P et al (2012) Myo-inositol may prevent gestational diabetes in PCOS women. Gynecol Endocrinol 28(6):440–442

    Article  PubMed  CAS  Google Scholar 

  274. Costantino D, Guaraldi C (2014) Ruolo del D-chiro-inositolo nelle alterazioni del metabolism glucidico in gravidanza. Minerva Ginecol 66:281–291

    CAS  PubMed  Google Scholar 

  275. Pesty A, Lefèvre B, Kubiak J et al (1994) Mouse oocyte maturation is affected by lithium via the polyphosphoinositide metabolism and the microtubule network. Mol Reprod Dev 38:187–199

    Article  CAS  PubMed  Google Scholar 

  276. DeLisle S, Blondel O, Longo FJ et al (1996) Expression of inositol 1,4,5-trisphosphate receptors changes the Ca2+ signal of Xenopus oocytes. Am J Physiol 270(4 Pt 1):C1255–C1261

    CAS  PubMed  Google Scholar 

  277. Carroll J, Jones KT, Whittingham DG (1996) Ca2+ release and the development of Ca2+ release mechanisms during oocyte maturation: a prelude to fertilization. Rev Reprod 1:137–143

    Article  CAS  PubMed  Google Scholar 

  278. Goud PT, Goud AP, Leybaert L et al (2002) Inositol 1,4,5-trisphosphate receptor function in human oocytes: calcium responses and oocyte activation-related phenomena induced by photolytic release of InsP3 are blocked by a specific antibody to the type 1 receptor. Mol Hum Reprod 8:912–918

    Article  CAS  PubMed  Google Scholar 

  279. Chiu TT, Rogers MS, Briton-Jones C, Haines C (2003) Effects of myo-inositol on the in-vitro maturation and subsequent development of mouse oocytes. Hum Reprod 18:408–416

    Article  CAS  PubMed  Google Scholar 

  280. Unfer V, Carlomagno G, Rizzo P et al (2011) Myo-inositol rather than D-chiro-inositol is able to improve oocyte quality in intracytoplasmic sperm injection cycles. A prospective, controlled, randomized trial. Eur Rev Med Pharmacol Sci 15:452–457

    CAS  PubMed  Google Scholar 

  281. Carlomagno G, Unfer V, Roseff S (2011) The D-chiro-inositol paradox in the ovary. Fertil Steril 95:2515–2516

    Article  CAS  PubMed  Google Scholar 

  282. Chattopadhayay R, Ganesh A, Samanta J et al (2010) Effect of follicular fluid oxidative stress on meiotic spindle formation in infertile women with polycystic ovarian syndrome. Gynecol Obstet Invest 69:197–202

    Article  CAS  PubMed  Google Scholar 

  283. Ciotta L, Stracquadanio M, Pagano I et al (2011) Effects of myo-inositol supplementation on oocyte’s quality in PCOS patients: a double blind trial. Eur Rev Med Pharmacol Sci 15:509–514

    CAS  PubMed  Google Scholar 

  284. Artini PG, Di Berardino OM, Papini F et al (2013) Endocrine and clinical effects of myo-inositol administration in polycystic ovary syndrome. A randomized study. Gynecol Endocrinol 29(4):375–379

    Article  CAS  PubMed  Google Scholar 

  285. Nordio M, Proietti E (2012) The combined therapy with myo-inositol and D-chiro-inositol reduces the risk of metabolic disease in PCOS overweight patients compared to myo-inositol supplementation alone. Eur Rev Med Pharmacol Sci 16:575–581

    CAS  PubMed  Google Scholar 

  286. Minozzi M, Nordio M, Pajalich R (2013) The combined therapy myo-inositol plus D-Chiro-inositol, in a physiological ratio, reduces the cardiovascular risk by improving the lipid profile in PCOS patients. Eur Rev Med Pharmacol Sci 17:537–540

    CAS  PubMed  Google Scholar 

  287. Palacio JR, Iborra A, Ulcova-Gallova Z et al (2006) The presence of antibodies to oxidative modified proteins in serum from polycystic ovary syndrome patients. Clin Exp Immunol 144:217–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Victor VM, Rocha M, Banuls C et al (2011) Induction of oxidative stress and human leukocyte/endothelial cell interactions in polycystic ovary syndrome patients with insulin resistance. J Clin Endocrinol Metab 96:3115–3122

    Article  CAS  PubMed  Google Scholar 

  289. Gonzalez F, Rote NS, Minium J, Kirwan JP (2006) Reactive oxygen species- induced oxidative stress in the development of insulin resistance and hyperandrogenism in polycystic ovary syndrome. J Clin Endocrinol Metab 91:336–340

    Article  CAS  PubMed  Google Scholar 

  290. Agarwal A, Aponte-Mellado A, Premkumar BJ et al (2012) The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol 10:49

    Article  PubMed  PubMed Central  Google Scholar 

  291. De Leo V, La Marca A, Cappelli V et al (2012) Valutazione del trattamento con D-Chiro-inositolo sui livelli di stress ossidative nelle pazienti con PCOS. Minerva Ginecol 64:6

    Google Scholar 

  292. Sugino N (2005) Reactive oxygen species in ovarian physiology. Reprod Med Biol 4:31–44

    Article  CAS  Google Scholar 

  293. Sugino N (2007) Roles of reactive oxygen species in the corpus luteum. Anim Sci J 77:556–565

    Article  CAS  Google Scholar 

  294. Yang HW, Hwang KJ, Kwon HC et al (1998) Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum Reprod 13:998–1002

    Article  CAS  PubMed  Google Scholar 

  295. Donà G, Sabbadin C, Fiore C et al (2012) Inositol administration reduces oxidative stress in erythrocytes of patients with polycystic ovary syndrome. Eur J Endocrinol 166:703–710

    Article  PubMed  CAS  Google Scholar 

  296. Reiter RJ (1991) Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev 12:151–180

    Article  CAS  PubMed  Google Scholar 

  297. Yie SM, Brown GM, Liu GY et al (1995) Melatonin and steroids in human pre-ovulatory follicular fluid: seasonal variations and granulosa cell steroid production. Hum Reprod 10:50–55

    Article  CAS  PubMed  Google Scholar 

  298. Brzezinski A, Seibel MM, Lynch HJ et al (1987) Melatonin in human preovulatory follicular fluid. J Clin Endocrinol Metab 64:865–867

    Article  CAS  PubMed  Google Scholar 

  299. Ronnberg L, Kauppila A, Leppaluoto J et al (1990) Circadian and seasonal variation in human preovulatory follicular fluid melatonin concentration. J Clin Endocrinol Metab 71:492–496

    Article  CAS  PubMed  Google Scholar 

  300. Manda K, Ueno M, Anzai K (2007) AFMK a melatonin metabolite, attenuates X-ray induced oxidative damage to DNA, proteins and lipids in mice. J Pineal Res 42:386–393

    Article  CAS  PubMed  Google Scholar 

  301. Tan DX, Chen LD, Poeggeler B et al (1993) Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocr J 1:57–60

    Google Scholar 

  302. Tan DX, Manchester LC, Terron MP et al (2007) One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 42:28–42

    Article  CAS  PubMed  Google Scholar 

  303. Zavodnik IB, Domansky AV, Lapshina EA et al (2006) Melatonin directly scavenges free radicals generated in red blood cells and a cell-free system: chemiluminescence measurements and theoretical calculations. Life Sci 79:391–400

    Article  CAS  PubMed  Google Scholar 

  304. Tomas-Zapico C, Coto-Montes A (2005) A proposed mechanism to explain the stimulatory effect of melatonin on antioxidative enzymes. J Pineal Res 39:99–104

    Article  CAS  PubMed  Google Scholar 

  305. Rizzo P, Raffone E, Benedetto V (2010) Effect of the treatment with myo-inositol plus folic acid plus melatonin in comparison with a treatment with myo-inositol plus folic acid on oocyte quality and pregnancy outcome in IVF cycles. A prospective, clinical trial. Eur Rev Med Pharmacol Sci 14:555–561

    CAS  PubMed  Google Scholar 

  306. Pittas AG, Lau J, Hu FB et al (2007) The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J Clin Endocrinol Metab 92(6):2017e29

    Google Scholar 

  307. Zemel MB (2004) Role of calcium and dairy products in energy partitioning and weight management. Am J Clin Nutr 79:907e12

    Google Scholar 

  308. Young KA, Engelman CD, Langefeld CD et al (2009) Association of plasma vitamin D levels with adiposity in Hispanic and African Americans. Clin Endocrinol Metab 94(9):3306e13

    Article  CAS  Google Scholar 

  309. Panidis D, Balaris C, Farmakiotis D et al (2005) Serum parathyroid hormone concentrations are increased in women with polycystic ovary syndrome. Clin Chem 51:1691e7

    Article  CAS  Google Scholar 

  310. ESHRE/ASRM (2004) Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril 81:19e25

    Google Scholar 

  311. Firouzabadi R, Aflatoonian A, Modarresi S et al (2012) Therapeutic effects of calcium & vitamin D supplementation in women with PCOS. Complement Ther Clin Pract 18:85–88

    Article  PubMed  Google Scholar 

  312. Elimoglu H, Duran C, Kiyici S et al (2010) The effect of vitamin D replacement therapy on insulin resistance and androgen levels in women with polycystic ovary syndrome. J Endocrinol Invest 33(4):234e8

    Google Scholar 

  313. Burton Freeman B (2000) Dietary fiber and energy regulation. J Nutr 130:272S–275S

    CAS  PubMed  Google Scholar 

  314. Keithley J, Swanson B (2005) Glucomannan and obesity: a critical review. Altern Ther Health Med 11(6):30–34

    PubMed  Google Scholar 

  315. Martino F et al (2005) Effect of dietary supplementation with glucomannan on plasma total cholesterol and low density lipoprotein cholesterol in hypercholesterolemic children. Nutr Metab Cardiovasc Dis 15:174–180

    Article  PubMed  Google Scholar 

  316. Chearskul S et al (2009) Immediate and long-term effects of glucomannan on total ghrelin and leptin in type 2 diabetes mellitus. Diabetes Res Clin Pract 83(2)

    Google Scholar 

  317. Vuksan V et al (2008) Viscosity of fiber preloads affects food intake in adolescents. Nutr Metab Cardiovasc Dis 19(7):498–503.

    Google Scholar 

  318. Blundell JE, Burley VJ (1987) Satiation, satiety and the action of fibre on food intake. Int J Obes 11:9–25

    PubMed  Google Scholar 

  319. Priya Sumithran MB et al (2011) Long-term persistence of hormonal adaptations to weight loss. N Engl J Med 365:17

    Article  Google Scholar 

  320. De Leo V, Tosti C, Cappelli V et al (2014) Combination inositol and glucomannan in PCOS patients. Minerva Ginecol 66(6):527–533

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stracquadanio, M., Ciotta, L. (2015). PCOS Therapy. In: Metabolic Aspects of PCOS. Springer, Cham. https://doi.org/10.1007/978-3-319-16760-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16760-2_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16759-6

  • Online ISBN: 978-3-319-16760-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics