Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Ocean engineering is a systems engineering field and requires a relatively broad background in several aspects of engineering. The role of hydrodynamics is central to all ocean engineering activities and despite an ocean engineer’s specialist designation, sooner or later some aspects of hydrodynamics will encroach upon the problem he or she is trying to solve. The intent of this chapter is not to provide an exhaustive treatment of marine hydrodynamics, but instead to act as a reference source to provide enough working knowledge to solve practical problems, or at least a good idea of where to start looking. A range of topics is covered including dimensional analysis, static and dynamic flows, potential and viscous flows, laminar and turbulent flows, boundary layers, wakes, jets and shear layers, and drag and lift forces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

ACV:

air cushion vehicle

CAB:

captured air bubble

FR:

Froude number

HYSWAS:

hydrofoil small water area ship

LOA:

length overall

LWL:

length on waterline

RANS:

Reynolds-averaged Navier–Stokes equation

RHIB:

rigid hull inflatable boat

RIB:

rigid inflatable boat

SWA:

small waterplane area

SWATH:

small waterplane area twin hull

TSR:

tip-speed ratio

ULCC:

ultra large crude carrier

VIV:

vortex-induced vibration

WIG:

wing in ground-effect

References

  • B.J. Cantwell: Introduction to Symmetry Analysis (Cambridge Univ. Press, Cambridge 2002)

    MATH  Google Scholar 

  • W. Valentine, K.D. von Ellenrieder: Model scaling of ocean hydrokinetic renewable energy systems, IEEE-JOE 40(1), 27–36 (2015)

    Google Scholar 

  • O.M. Faltinsen: Hydrodynamics of High-Speed Marine Vehicles (Cambridge Univ. Press, New York 2005)

    Google Scholar 

  • M. Ferrando, M. Viviani, S. Crotti, P. Cassella, S. Caldarella: Influence of Weber number on surface piercing propellers model tests scaling, Proc 7th Int. Conf. Hydrodyn., Ischia (2006)

    Google Scholar 

  • J.N. Newman: Marine Hydrodynamics (MIT Press, Cambridge 1977)

    Google Scholar 

  • R.D. Blevins: Flow-induced Vibration (Van Nostrand Reinhold, New York 1990)

    MATH  Google Scholar 

  • G.S. Triantafyllou, M.S. Triantafyllou, R. Gopalkrishnan: Wake mechanics for thrust generation in oscillating foils, Phys. Fluids A 3(12), 2835–2837 (1991)

    Article  Google Scholar 

  • J.H. VanZwieten, N. Vanrietvelde, B.L. Hacker: Numerical simulation of an experimental ocean current turbine, IEEE-JOE 38(1), 131–143 (2013)

    Google Scholar 

  • A. Roshko: Experiments on the flow past a circular cylinder at very high Reynolds number, J. Fluid Mech. 10(3), 345–356 (1961)

    Article  MATH  Google Scholar 

  • O.M. Griffin, S.E. Ramberg: Vortex shedding from a cylinder vibrating in line with an incident uniform flow, J. Fluid Mech. 75(2), 257–271 (1976)

    Article  Google Scholar 

  • R.A. Dalrymple, R.G. Dean: Water Wave Mechanics for Engineers and Scientists (Prentice-Hall, Hackensack 1991)

    Google Scholar 

  • M. Miche: Le pouvoir reflechissant des ouvrages maritimes exposes a l’action de la houle, Ann. Ponts Chaussées 121, 285–319 (1951)

    Google Scholar 

  • I.A. Hunt: Design of seawalls and breakers, J. Waterw. Harb. Coast. Eng. Div. 85(3), 123–152 (1959)

    Google Scholar 

  • R.E. Randall: Elements of Ocean Engineering (Society of Naval Architects and Marine Engineers, Jersey City 2010)

    Google Scholar 

  • M.S. Longuet-Higgins: Longshore currents generated by obliquely incident sea waves: 1, J. Geophys. Res. 75(33), 6778–6789 (1970)

    Article  Google Scholar 

  • F.M. White: Viscous Fluids Flow (McGraw-Hill, New York 1991)

    Google Scholar 

  • B. Cantwell, D. Coles, P. Dimotakis: Structure and entrainment in the plane of symmetry of a turbulent spot, J. Fluid Mech. 87(4), 641–672 (1978)

    Article  Google Scholar 

  • C.M. De Silva, E.P. Gnanamanickam, C. Atkinson, N.A. Buchmann, N. Hutchins, J. Soria, I. Marusic: High spatial range velcity measurements in a high Reyonolds number turbulent boundary layer, Phys. Fluids 26(2), 025117 (2004)

    Article  Google Scholar 

  • J.D. van Manen, P. van Oossanen: Resistance and propulsion. In: Principles of Naval Architecture, Vol. 2, ed. by E.V. Lewis (Society of Naval Architects and Marine Engineers, New York 1988) pp. 228–462

    Google Scholar 

  • H. Schlichting: Boundary Layer Theory (McGraw-Hill, New York 1968)

    MATH  Google Scholar 

  • J.D. Anderson: Fundamentals of Aerodynamics (McGraw-Hill, New York 2001)

    Google Scholar 

  • I.H. Abbott, A.E. von Doenhoff, L.S. Stivers: Summary of Airfoil Data, Rep. 824 (NACA, Langley 1945)

    Google Scholar 

  • S.F. Hoerner: Fluid Dynamic Drag (Hoerner Fluid Dynamics, Alburqueque 1965)

    Google Scholar 

  • P.F. Rynne, K.D. von Ellenrieder: Unmanned autonomous sailing: Current status and future role in sustained ocean observations, Mar. Technol. Soc. J. 43(1), 21–30 (2009)

    Article  Google Scholar 

  • P.F. Rynne, K.D. von Ellenrieder: Development and preliminary experimental validation of a wind and solar powered autonomous surface vehicle, IEEE-JOE 35(4), 971–983 (2010)

    Google Scholar 

  • G. Elkaim, R. Kelbley: Control architecture for segmented trajectory following of a wind-propelled autonomous catamaran, Proc. AIAA Guid. Navig. Control Conf., Keystone (2006)

    Google Scholar 

  • N. Cruz, J. Alves: Autonomous sailboats: An emerging technology for ocean sampling and surveillance, Proc. IEEE OCEANS’08, Quebec City (2008)

    Google Scholar 

  • M. Neal: A hardware proof of concept of a sailing robot for ocean observation, IEEE-JOE 31(2), 462–469 (2006)

    Google Scholar 

  • D. Savitsky: On the Subject of High-speed Monohulls (Society of Naval Architects and Marine Engineers, Athens 2003)

    Google Scholar 

  • L. Larsson, R.E. Eliasson: Principles of Yacht Design (International Marine, Camden 2000)

    Google Scholar 

  • E.C. Tupper: Introduction to Naval Architecture: Formerly Muckle’s Naval Architecture for Marine Engineers (Butterworth-Heinemann, Oxford 2013)

    Google Scholar 

  • T. Lamb: Ship Design and Construction (Society of Naval Architects and Marine Engineers, Jersey City 2004)

    Google Scholar 

  • W.M. Ellsworth, W.C. O'Neill: The U.S. Navy Hydrofoil Development Program, A Status Report, Tech. Note SDD-OH50-62 (Naval Research and Development, 1970)

    Google Scholar 

  • H.O. Berteaux: Buoy Engineering (Wiley, New York 1976)

    Google Scholar 

  • T.C. Gillmer, B. Johnson: Introduction to Naval Architecture (Naval Institute Press, Annapolis 1982)

    Book  Google Scholar 

  • P.K. Kundu, I.M. Cohen: Fluid Mechanics (Academic Press, San Diego 2008)

    Google Scholar 

  • R. Lock: The velocity distribution in the laminar boundary layer between parallel streams, Q. J. Mech. Appl. Math. 4(1), 42–63 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  • NASA Langley Research Center: Turbulence Modeling Resource, http://turbmodels.larc.nasa.gov/

  • H. Tennekes, J.L. Lumley: A First Course in Turbulence (MIT, Cambridge 1972)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Dietrich von Ellenrieder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

von Ellenrieder, K.D., Dhanak, M.R. (2016). Hydromechanics. In: Dhanak, M.R., Xiros, N.I. (eds) Springer Handbook of Ocean Engineering. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-16649-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16649-0_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16648-3

  • Online ISBN: 978-3-319-16649-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics