Skip to main content

Successes and Pitfalls in Scoring Molecular Interactions

  • Conference paper
Bioinformatics and Biomedical Engineering (IWBBIO 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9044))

Included in the following conference series:

  • 3048 Accesses

Abstract

The appropriate evaluation of molecular interactions is still an important challenge in molecular modeling field. The difficulties for scoring those interactions become clear when the performance of the so-called ‘ligand-based’ methods is compared with the ‘structure-based’ methods. Although more information is provided for the latter, the former very often performs better in recovering actual binders from a set of ligands and decoys. Here, we compare some results of different scoring functions as implemented and tested in our hybrid-docking algorithm named LiBELa. The results show that the parameters devised from force fields such as AMBER provide a very good estimate of the polar and van der Waals contribution for binding. When properly set up, soft-docking, i.e., a smooth potential, can, at best, reproduce the results obtained with force fields, but hardly outperforms the former. Finally, the results obtained in our group and from other groups clearly indicate that an adequate potential for modeling the solvent effect is still a goal to be achieved. At best, the current empirical solvation models used in docking algorithms can lead to improvement of enrichment in ROC curves for a fraction (50% or less) of the current and gold-standard test sets. In conclusion, the scoring of molecular interactions at an atomic level is a promising field with many important advances achieved but also with a number of open issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beddell, C., Goodford, P., Norrington, F., Wilkinson, S., Wootton, R.: Compounds Designed to Fit a Site of Known Structure in Human Hemoglobin. British Journal of Pharmacology 57, 201–209 (1976)

    Article  Google Scholar 

  2. Berman, H., Battistuz, T., Bhat, T., Bluhm, W., Bourne, P., Burkhardt, K., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J., Zardecki, C.: The Protein Data Bank. Acta Crystallographica Section D-Biological Crystallography 58, 899–907 (2002)

    Article  Google Scholar 

  3. Leach, A.R.: Molecular modelling: principles and applications, 2nd edn. Prentice Hall, Harlow (2001)

    Google Scholar 

  4. Good, A.C., Hodgkin, E.E., Richards, W.G.: Similarity Screening of Molecular-Data Sets. Journal of Computer-Aided Molecular Design 6, 513–520 (1992)

    Article  Google Scholar 

  5. Armstrong, M.S., Morris, G.M., Finn, P.W., Sharma, R., Moretti, L., Cooper, R.I., Richards, W.G.: ElectroShape: fast molecular similarity calculations incorporating shape, chirality and electrostatics. J. Comput. Aided Mol. Des. 24, 789–801 (2010)

    Article  Google Scholar 

  6. Armstrong, M.S., Finn, P.W., Morris, G.M., Richards, W.G.: Improving the accuracy of ultrafast ligand-based screening: incorporating lipophilicity into ElectroShape as an extra dimension. J. Comput. Aided Mol. Des. 25, 785–790 (2011)

    Article  Google Scholar 

  7. Vaz de Lima, L.A.C., Nascimento, A.S.: MolShaCS: A free and open source tool for ligand similarity identification based on Gaussian descriptors. European Journal of Medicinal Chemistry 59, 296–303 (2013)

    Article  Google Scholar 

  8. Verkhivker, G., Bouzida, D., Gehlhaar, D., Rejto, P., Freer, S., Rose, P.: Complexity and simplicity of ligand-macromolecule interactions: the energy landscape perspective. Current Opinion in Structural Biology 12, 197–203 (2002)

    Article  Google Scholar 

  9. Verkhivker, G.M., Rejto, P.A., Bouzida, D., Arthurs, S., Colson, A.B., Freer, S.T., Gehlhaar, D.K., Larson, V., Luty, B.A., Marrone, T., Rose, P.W.: Towards understanding the mechanisms of molecular recognition by computer simulations of ligand-protein interactions. Journal of Molecular Recognition 12 (1999)

    Google Scholar 

  10. O’Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., Hutchison, G.R.: Open Babel: An open chemical toolbox. J. Cheminform. 3, 33 (2011)

    Article  Google Scholar 

  11. Luty, B.A., Wasserman, Z.R., Stouten, P.F.W., Hodge, C.N., Zacharias, M., McCammon, J.A.: A Molecular Mechanics Grid Method For Evaluation of Ligand-Receptor Interactions. Journal of Computational Chemistry 16, 454–464 (1995)

    Article  Google Scholar 

  12. Meng, E.C., Shoichet, B.K., Kuntz, I.D.: Automated Docking with Grid-Based Energy Evaluation. Journal of Computational Chemistry 13, 505–524 (1992)

    Article  Google Scholar 

  13. Stouten, P.F.W., Frommel, C., Nakamura, H., Sander, C.: An Effective Solvation Term Based on Atomic Occupancies For Use in Protein Simulations. Molecular Simulation 10, 97–120 (1993)

    Article  Google Scholar 

  14. Wang, J., Wang, W., Kollman, P.A., Case, D.A.: Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 25, 247–260 (2006)

    Article  Google Scholar 

  15. Andreani, R., Birgin, E.G., Martinez, J.M., Schuverdt, M.L.: On Augmented Lagrangian Methods with General Lower-Level Constraints. Siam Journal on Optimization 18, 1286–1309 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. Journal of Optimization Theory and Applications 79, 157–181 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jhonson, S.G.: The NLopt nonlinear-optimization package, The NLopt nonlinear-optimization package, http://ab-initio.mit.edu/nlopt

  18. Mukherjee, S., Balius, T., Rizzo, R.: Docking Validation Resources: Protein Family and Ligand Flexibility Experiments. Journal of Chemical Information and Modeling 50, 1986–2000 (2010)

    Article  Google Scholar 

  19. Moustakas, D., Lang, P., Pegg, S., Pettersen, E., Kuntz, I., Brooijmans, N., Rizzo, R.: Development and validation of a modular, extensible docking program: DOCK 5. Journal of Computer-Aided Molecular Design 20, 601–619 (2006)

    Article  Google Scholar 

  20. Huang, N., Shoichet, B.K., Irwin, J.J.: Benchmarking sets for molecular docking. J. Med. Chem. 49, 6789–6801 (2006)

    Article  Google Scholar 

  21. Mysinger, M., Carchia, M., Irwin, J., Shoichet, B.: Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking. Journal of Medicinal Chemistry 55, 6582–6594 (2012)

    Article  Google Scholar 

  22. Mysinger, M.M., Shoichet, B.K.: Rapid Context-Dependent Ligand Desolvation in Molecular Docking. Journal of Chemical Information and Modeling 50, 1561–1573 (2010)

    Article  Google Scholar 

  23. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E.: UCSF chimera - A visualization system for exploratory research and analysis. Journal of Computational Chemistry 25, 1605–1612 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Muniz, H.S., Nascimento, A.S. (2015). Successes and Pitfalls in Scoring Molecular Interactions. In: Ortuño, F., Rojas, I. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2015. Lecture Notes in Computer Science(), vol 9044. Springer, Cham. https://doi.org/10.1007/978-3-319-16480-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16480-9_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16479-3

  • Online ISBN: 978-3-319-16480-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics