Skip to main content

Pathologists’ Roles in Molecular Oncology Testing of Solid Tumors

  • Chapter
Molecular Oncology Testing for Solid Tumors
  • 1209 Accesses

Abstract

Pathologists play a critical role at least in the pre-analytic component of the total test system. While the majority of general pathologists do not physically perform molecular testing in the laboratory, their active participation in the total test system is required. For meaningful and effective participation in molecular testing, knowledge of the testing process, limitations of testing and factors that might potentially lead to test failures is critical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. CLSI. Establishing molecular testing in clinical laboratory environments: approved guideline. CLSI document MM19-A. Wayne, PA: Clinical and Laboratory Standards Institute; 2011.

    Google Scholar 

  2. Mulero JJ, Chang CW, Lagace RE, Wang DY, Bas JL, McMahon TP, et al. Development and validation of the AmpFlSTR MiniFiler PCR Amplification Kit: a MiniSTR multiplex for the analysis of degraded and/or PCR inhibited DNA. J Forensic Sci. 2008;53(4):838–52.

    Article  CAS  PubMed  Google Scholar 

  3. Viertler C, Groelz D, Gundisch S, Kashofer K, Reischauer B, Riegman PH, et al. A new technology for stabilization of biomolecules in tissues for combined histological and molecular analyses. J Mol Diagn. 2012;14(5):458–66.

    Article  CAS  PubMed  Google Scholar 

  4. Gnanapragasam VJ. Unlocking the molecular archive: the emerging use of formalin-fixed paraffin-embedded tissue for biomarker research in urological cancer. BJU Int. 2010;105(2):274–8.

    Article  PubMed  Google Scholar 

  5. Kashofer K, Viertler C, Pichler M, Zatloukal K. Quality control of RNA preservation and extraction from paraffin-embedded tissue: implications for RT-PCR and microarray analysis. PLoS One. 2013;8(7):e70714.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Votavova H, Forsterova K, Stritesky J, Velenska Z, Trneny M. Optimized protocol for gene expression analysis in formalin-fixed, paraffin-embedded tissue using real-time quantitative polymerase chain reaction. Diagn Mol Pathol. 2009;18(3):176–82.

    Article  CAS  PubMed  Google Scholar 

  7. Evers DL, Fowler CB, Cunningham BR, Mason JT, O’Leary TJ. The effect of formaldehyde fixation on RNA: optimization of formaldehyde adduct removal. J Mol Diagn. 2011;13(3):282–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Chen J, Byrne Jr GE, Lossos IS. Optimization of RNA extraction from formalin-fixed, paraffin-embedded lymphoid tissues. Diagn Mol Pathol. 2007;16(2):61–72.

    Article  PubMed  Google Scholar 

  9. Gallegos Ruiz MI, Floor K, Rijmen F, Grunberg K, Rodriguez JA, Giaccone G. EGFR and K-ras mutation analysis in non-small cell lung cancer: comparison of paraffin embedded versus frozen specimens. Cell Oncol. 2007;29(3):257–64.

    CAS  PubMed  Google Scholar 

  10. Marchetti A, Felicioni L, Buttitta F. Assessing EGFR mutations. N Engl J Med. 2006;354(5):526–8. author reply 8.

    Article  CAS  PubMed  Google Scholar 

  11. Turashvili G, Yang W, McKinney S, Kalloger S, Gale N, Ng Y, et al. Nucleic acid quantity and quality from paraffin blocks: defining optimal fixation, processing and DNA/RNA extraction techniques. Exp Mol Pathol. 2012;92(1):33–43.

    Article  CAS  PubMed  Google Scholar 

  12. Wood HM, Belvedere O, Conway C, Daly C, Chalkley R, Bickerdike M, et al. Using next-generation sequencing for high resolution multiplex analysis of copy number variation from nanogram quantities of DNA from formalin-fixed paraffin-embedded specimens. Nucleic Acids Res. 2010;38(14):e151.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Clinical and Laboratory Standards Institute (CLSI). Nucleic acid sequencing methods in diagnostic laboratory medicine: approved guideline. CLSI document MM09-A2. 2nd ed. Wayne, PA: CLSI; 2014.

    Google Scholar 

  14. Hewitt SM, Lewis FA, Cao Y, Conrad RC, Cronin M, Danenberg KD, et al. Tissue handling and specimen preparation in surgical pathology: issues concerning the recovery of nucleic acids from formalin-fixed, paraffin-embedded tissue. Arch Pathol Lab Med. 2008;132(12):1929–35.

    PubMed  Google Scholar 

  15. Howat WJ, Wilson BA. Tissue fixation and the effect of molecular fixatives on downstream staining procedures. Methods. 2014;70:12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Srinivasan M, Sedmak D, Jewell S. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol. 2002;161(6):1961–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Williams C, Ponten F, Moberg C, Soderkvist P, Uhlen M, Ponten J, et al. A high frequency of sequence alterations is due to formalin fixation of archival specimens. Am J Pathol. 1999;155(5):1467–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Douglas MP, Rogers SO. DNA damage caused by common cytological fixatives. Mutat Res. 1998;401(1-2):77–88.

    Article  CAS  PubMed  Google Scholar 

  19. Paabo S, Irwin DM, Wilson AC. DNA damage promotes jumping between templates during enzymatic amplification. J Biol Chem. 1990;265(8):4718–21.

    CAS  PubMed  Google Scholar 

  20. CAP. CAP accreditation program. Molecular pathology checklist. Northfield, IL: College of American Pathologists; 2014.

    Google Scholar 

  21. Smits AJ, Kummer JA, de Bruin PC, Bol M, van den Tweel JG, Seldenrijk KA, et al. The estimation of tumor cell percentage for molecular testing by pathologists is not accurate. Mod Pathol. 2014;27(2):168–74.

    Article  PubMed  Google Scholar 

  22. Viray H, Li K, Long TA, Vasalos P, Bridge JA, Jennings LJ, et al. A prospective, multi-institutional diagnostic trial to determine pathologist accuracy in estimation of percentage of malignant cells. Arch Pathol Lab Med. 2013;137(11):1545–9.

    Article  PubMed  Google Scholar 

  23. True LD. Methodological requirements for valid tissue-based biomarker studies that can be used in clinical practice. Virchows Arch. 2014;464(3):257–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Maes RK, Langohr IM, Wise AG, Smedley RC, Thaiwong T, Kiupel M. Beyond H&E: integration of nucleic acid-based analyses into diagnostic pathology. Vet Pathol. 2014;51(1):238–56.

    Article  CAS  PubMed  Google Scholar 

  25. Planque N. Nuclear trafficking of secreted factors and cell-surface receptors: new pathways to regulate cell proliferation and differentiation, and involvement in cancers. Cell Commun Signal. 2006;4:7.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Lin MT, Mosier SL, Thiess M, Beierl KF, Debeljak M, Tseng LH, et al. Clinical validation of KRAS, BRAF, and EGFR mutation detection using next-generation sequencing. Am J Clin Pathol. 2014;141(6):856–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Group EW. Recommendations from the EGAPP Working Group: can testing of tumor tissue for mutations in EGFR pathway downstream effector genes in patients with metastatic colorectal cancer improve health outcomes by guiding decisions regarding anti-EGFR therapy? Genet Med. 2013;15(7):517–27.

    Article  Google Scholar 

  28. Dudley J, Tseng LH, Rooper L, Harris M, Haley L, Chen G, et al. Challenges posed to pathologists in the detection of KRAS mutations in colorectal cancers. Arch Pathol Lab Med. 2015;139(2):211–8.

    Article  PubMed  Google Scholar 

  29. Dudley JC, Gurda GT, Tseng LH, Anderson DA, Chen G, Taube JM, et al. Tumor cellularity as a quality assurance measure for accurate clinical detection of BRAF mutations in melanoma. Mol Diagn Ther. 2014;18:409.

    Article  CAS  PubMed  Google Scholar 

  30. Davison JM, Choudry HA, Pingpank JF, Ahrendt SA, Holtzman MP, Zureikat AH, et al. Clinicopathologic and molecular analysis of disseminated appendiceal mucinous neoplasms: identification of factors predicting survival and proposed criteria for a three-tiered assessment of tumor grade. Mod Pathol. 2014;27:1521.

    Article  PubMed  Google Scholar 

  31. Kelemen LE, Kobel M. Mucinous carcinomas of the ovary and colorectum: different organ, same dilemma. Lancet Oncol. 2011;12(11):1071–80.

    Article  PubMed  Google Scholar 

  32. Nishikawa G, Sekine S, Ogawa R, Matsubara A, Mori T, Taniguchi H, et al. Frequent GNAS mutations in low-grade appendiceal mucinous neoplasms. Br J Cancer. 2013;108(4):951–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Canene-Adams K. Explanatory chapter: troubleshooting PCR. Methods Enzymol. 2013;529:271–8.

    Article  CAS  PubMed  Google Scholar 

  34. Roux KH. Optimization and troubleshooting in PCR. Cold Spring Harb Protoc. 2009;2009(4):pdb.ip66.

    Article  PubMed  Google Scholar 

  35. Hunt JL. Molecular pathology in anatomic pathology practice: a review of basic principles. Arch Pathol Lab Med. 2008;132(2):248–60.

    CAS  PubMed  Google Scholar 

  36. Killeen AA. Molecular medicine. In: Killeen AA, editor. Molecular pathology protocols. Totowa, NJ: Humana Press Inc; 2001.

    Google Scholar 

  37. Radstrom P, Knutsson R, Wolffs P, Lovenklev M, Lofstrom C. Pre-PCR processing: strategies to generate PCR-compatible samples. Mol Biotechnol. 2004;26(2):133–46.

    Article  PubMed  Google Scholar 

  38. Byrnes JJ, Downey KM, Esserman L, So AG. Mechanism of hemin inhibition of erythroid cytoplasmic DNA polymerase. Biochemistry. 1975;14(4):796–9.

    Article  CAS  PubMed  Google Scholar 

  39. Kosel S, Grasbon-Frodl EM, Arima K, Chimelli L, Hahn M, Hashizume Y, et al. Inter-laboratory comparison of DNA preservation in archival paraffin-embedded human brain tissue from participating centres on four continents. Neurogenetics. 2001;3(3):163–70.

    Article  CAS  PubMed  Google Scholar 

  40. Cankovic M, Nikiforova MN, Snuderl M, Adesina AM, Lindeman N, Wen PY, et al. The role of MGMT testing in clinical practice: a report of the association for molecular pathology. J Mol Diagn. 2013;15(5):539–55.

    Article  CAS  PubMed  Google Scholar 

  41. Van Meter T, Dumur C, Hafez N, Garrett C, Fillmore H, Broaddus WC. Microarray analysis of MRI-defined tissue samples in glioblastoma reveals differences in regional expression of therapeutic targets. Diagn Mol Pathol. 2006;15(4):195–205.

    Article  PubMed  Google Scholar 

  42. Schrader C, Schielke A, Ellerbroek L, Johne R. PCR inhibitors - occurrence, properties and removal. J Appl Microbiol. 2012;113(5):1014–26.

    Article  CAS  PubMed  Google Scholar 

  43. Eckhart L, Bach J, Ban J, Tschachler E. Melanin binds reversibly to thermostable DNA polymerase and inhibits its activity. Biochem Biophys Res Commun. 2000;271(3):726–30.

    Article  CAS  PubMed  Google Scholar 

  44. Price K, Linge C. The presence of melanin in genomic DNA isolated from pigmented cell lines interferes with successful polymerase chain reaction: a solution. Melanoma Res. 1999;9(1):5–9.

    Article  CAS  PubMed  Google Scholar 

  45. Dorrie J, Wellner V, Kampgen E, Schuler G, Schaft N. An improved method for RNA isolation and removal of melanin contamination from melanoma tissue: implications for tumor antigen detection and amplification. J Immunol Methods. 2006;313(1-2):119–28.

    Article  PubMed  Google Scholar 

  46. Belec L, Authier J, Eliezer-Vanerot MC, Piedouillet C, Mohamed AS, Gherardi RK. Myoglobin as a polymerase chain reaction (PCR) inhibitor: a limitation for PCR from skeletal muscle tissue avoided by the use of Thermus thermophilus polymerase. Muscle Nerve. 1998;21(8):1064–7.

    Article  CAS  PubMed  Google Scholar 

  47. Diaz-Cano SJ, Brady SP. DNA extraction from formalin-fixed, paraffin-embedded tissues: protein digestion as a limiting step for retrieval of high-quality DNA. Diagn Mol Pathol. 1997;6(6):342–6.

    Article  CAS  PubMed  Google Scholar 

  48. Greer CE, Lund JK, Manos MM. PCR amplification from paraffin-embedded tissues: recommendations on fixatives for long-term storage and prospective studies. PCR Methods Appl. 1991;1(1):46–50.

    Article  CAS  PubMed  Google Scholar 

  49. CLSI. Nucleic acid amplification assays for molecular hematopathology; approved guideline. CLSI document MM05-A2. 2nd ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2012.

    Google Scholar 

  50. Singh VM, Salunga RC, Huang VJ, Tran Y, Erlander M, Plumlee P, et al. Analysis of the effect of various decalcification agents on the quantity and quality of nucleic acid (DNA and RNA) recovered from bone biopsies. Ann Diagn Pathol. 2013;17(4):322–6.

    Article  PubMed  Google Scholar 

  51. Reineke T, Jenni B, Abdou MT, Frigerio S, Zubler P, Moch H, et al. Ultrasonic decalcification offers new perspectives for rapid FISH, DNA, and RT-PCR analysis in bone marrow trephines. Am J Surg Pathol. 2006;30(7):892–6.

    Article  PubMed  Google Scholar 

  52. Alers JC, Krijtenburg PJ, Vissers KJ, van Dekken H. Effect of bone decalcification procedures on DNA in situ hybridization and comparative genomic hybridization. EDTA is highly preferable to a routinely used acid decalcifier. J Histochem Cytochem. 1999;47(5):703–10.

    Article  CAS  PubMed  Google Scholar 

  53. Gilbert MT, Haselkorn T, Bunce M, Sanchez JJ, Lucas SB, Jewell LD, et al. The isolation of nucleic acids from fixed, paraffin-embedded tissues-which methods are useful when? PLoS One. 2007;2(6):e537.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Shi SR, Cote RJ, Wu L, Liu C, Datar R, Shi Y, et al. DNA extraction from archival formalin-fixed, paraffin-embedded tissue sections based on the antigen retrieval principle: heating under the influence of pH. J Histochem Cytochem. 2002;50(8):1005–11.

    Article  CAS  PubMed  Google Scholar 

  55. Wu L, Patten N, Yamashiro CT, Chui B. Extraction and amplification of DNA from formalin-fixed, paraffin-embedded tissues. Appl Immunohistochem Mol Morphol. 2002;10(3):269–74.

    CAS  PubMed  Google Scholar 

  56. Shi SR, Datar R, Liu C, Wu L, Zhang Z, Cote RJ, et al. DNA extraction from archival formalin-fixed, paraffin-embedded tissues: heat-induced retrieval in alkaline solution. Histochem Cell Biol. 2004;122(3):211–8.

    Article  CAS  PubMed  Google Scholar 

  57. Jackson V. Studies on histone organization in the nucleosome using formaldehyde as a reversible cross-linking agent. Cell. 1978;15(3):945–54.

    Article  CAS  PubMed  Google Scholar 

  58. Jackson V. Formaldehyde cross-linking for studying nucleosomal dynamics. Methods. 1999;17(2):125–39.

    Article  CAS  PubMed  Google Scholar 

  59. Dedhia P, Tarale S, Dhongde G, Khadapkar R, Das B. Evaluation of DNA extraction methods and real time PCR optimization on formalin-fixed paraffin-embedded tissues. Asian Pac J Cancer Prev. 2007;8(1):55–9.

    PubMed  Google Scholar 

  60. Chan PK, Chan DP, To KF, Yu MY, Cheung JL, Cheng AF. Evaluation of extraction methods from paraffin wax embedded tissues for PCR amplification of human and viral DNA. J Clin Pathol. 2001;54(5):401–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. McCourt CM, Boyle D, James J, Salto-Tellez M. Immunohistochemistry in the era of personalised medicine. J Clin Pathol. 2013;66(1):58–61.

    Article  CAS  PubMed  Google Scholar 

  62. Bussolati G, Leonardo E. Technical pitfalls potentially affecting diagnoses in immunohistochemistry. J Clin Pathol. 2008;61(11):1184–92.

    Article  CAS  PubMed  Google Scholar 

  63. Ramos-Vara JA, Miller MA. When tissue antigens and antibodies get along: revisiting the technical aspects of immunohistochemistry – the red, brown, and blue technique. Vet Pathol. 2014;51(1):42–87.

    Article  CAS  PubMed  Google Scholar 

  64. Shia J, Holck S, Depetris G, Greenson JK, Klimstra DS. Lynch syndrome-associated neoplasms: a discussion on histopathology and immunohistochemistry. Fam Cancer. 2013;12(2):241–60.

    Article  CAS  PubMed  Google Scholar 

  65. Geiersbach KB, Samowitz WS. Microsatellite instability and colorectal cancer. Arch Pathol Lab Med. 2011;135(10):1269–77.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael O. Idowu M.D., M.P.H. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Idowu, M.O. (2015). Pathologists’ Roles in Molecular Oncology Testing of Solid Tumors. In: Idowu, M., Dumur, C., Garrett, C. (eds) Molecular Oncology Testing for Solid Tumors. Springer, Cham. https://doi.org/10.1007/978-3-319-16304-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16304-8_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16303-1

  • Online ISBN: 978-3-319-16304-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics