Skip to main content

Molecular Biology Basics in the “Omics” Era: Cancer Pathology

  • Chapter
Molecular Oncology Testing for Solid Tumors

Abstract

Over the past two decades, advances in the understanding of molecular biology have led to the development of an array of new molecular diagnostic tests. As a result, the care of cancer patients is undergoing an impressive revolution from “trial and error” to a “personalized” approach, based on a more detailed understanding of the biology of a patient’s tumor. Hundreds of biomarkers are currently in use to provide diagnostic and prognostic information to clinicians and help determine the optimal treatment regimen for a given tumor and molecular testing is becoming the standard of care for an increasing number of tumors. Basic knowledge of the cell cycle, cell cycle regulators, and the roles of proto-oncogenes, oncogenes, tumor suppressor genes, DNA repair mechanisms, and control of programmed cell death is critical for medical practitioners to keep pace with the rapid molecular revolution and the rationale for targeted therapy. This knowledge is also important to understand the utility and limitations of available tumor biomarkers to ensure appropriate test utilization. It is imperative that medical practitioners especially pathologists and oncologists keep abreast of these rapid developments in order to provide contemporary care to cancer patients. This chapter provides an overview of basic molecular tumor pathology and targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jorde LBCJ, Bamshad MJ, editors. Medical genetics. 4th ed. Philadelphia, PA: Mosby/Elsevier; 2010.

    Google Scholar 

  2. Hoeijmakers JH. Genome maintenance mechanisms are critical for preventing cancer as well as other aging-associated diseases. Mech Ageing Dev. 2007;128(7-8):460–2.

    CAS  PubMed  Google Scholar 

  3. Hoeijmakers JH. DNA damage, aging, and cancer. N Engl J Med. 2009;361(15):1475–85.

    CAS  PubMed  Google Scholar 

  4. Luijsterburg MS, van Attikum H. Chromatin and the DNA damage response: the cancer connection. Mol Oncol. 2011;5(4):349–67.

    CAS  PubMed  Google Scholar 

  5. Morrison AJ, Shen X. DNA repair in the context of chromatin. Cell Cycle. 2005;4(4):568–71.

    CAS  PubMed  Google Scholar 

  6. Reddy KL, Feinberg AP. Higher order chromatin organization in cancer. Semin Cancer Biol. 2013;23(2):109–15.

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Gondor A. Nuclear architecture and chromatin structure on the path to cancer. Semin Cancer Biol. 2013;23(2):63–4.

    PubMed  Google Scholar 

  8. Page SL, Hawley RS. Chromosome choreography: the meiotic ballet. Science. 2003;301(5634):785–9.

    CAS  PubMed  Google Scholar 

  9. Nebert DW. Transcription factors and cancer: an overview. Toxicology. 2002;181–182:131–41.

    PubMed  Google Scholar 

  10. De Bont R, van Larebeke N. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis. 2004;19(3):169–85.

    PubMed  Google Scholar 

  11. Sander M, Cadet J, Casciano DA, Galloway SM, Marnett LJ, Novak RF, et al. Proceedings of a workshop on DNA adducts: biological significance and applications to risk assessment Washington, DC, April 13–14, 2004. Toxicol Appl Pharmacol. 2005;208(1):1–20.

    CAS  PubMed  Google Scholar 

  12. Nagai H, Toyokuni S. Biopersistent fiber-induced inflammation and carcinogenesis: lessons learned from asbestos toward safety of fibrous nanomaterials. Arch Biochem Biophys. 2010;502(1):1–7.

    CAS  PubMed  Google Scholar 

  13. Moyer VD, Cistulli CA, Vaslet CA, Kane AB. Oxygen radicals and asbestos carcinogenesis. Environ Health Perspect. 1994;102 Suppl 10:131–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Tirnitz-Parker JE, Glanfield A, Olynyk JK, Ramm GA. Iron and hepatic carcinogenesis. Crit Rev Oncog. 2013;18(5):391–407.

    PubMed  Google Scholar 

  15. Mariani F, Sena P, Roncucci L. Inflammatory pathways in the early steps of colorectal cancer development. World J Gastroenterol. 2014;20(29):9716–31.

    PubMed Central  PubMed  Google Scholar 

  16. Sekine Y, Hata A, Koh E, Hiroshima K. Lung carcinogenesis from chronic obstructive pulmonary disease: characteristics of lung cancer from COPD and contribution of signal transducers and lung stem cells in the inflammatory microenvironment. Gen Thorac Cardiovasc Surg. 2014;62(7):415–21.

    PubMed  Google Scholar 

  17. Mullin JM. Epithelial barriers, compartmentation, and cancer. Sci STKE. 2004;2004(216), e2.

    Google Scholar 

  18. Bishop WP, Wen JT. Regulation of Caco-2 cell proliferation by basolateral membrane epidermal growth factor receptors. Am J Physiol. 1994;267(5 Pt 1):G892–900.

    CAS  PubMed  Google Scholar 

  19. Watson CJ, Rowland M, Warhurst G. Functional modeling of tight junctions in intestinal cell monolayers using polyethylene glycol oligomers. Am J Physiol Cell physiol. 2001;281(2):C388–97.

    CAS  PubMed  Google Scholar 

  20. Verkman AS, Anderson MO, Papadopoulos MC. Aquaporins: important but elusive drug targets. Nat Rev Drug Discov. 2014;13(4):259–77.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Verkman AS, Hara-Chikuma M, Papadopoulos MC. Aquaporins – new players in cancer biology. J Mol Med. 2008;86(5):523–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Hara-Chikuma M, Verkman AS. Prevention of skin tumorigenesis and impairment of epidermal cell proliferation by targeted aquaporin-3 gene disruption. Mol Cell Biol. 2008;28(1):326–32.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Chen J, Wang T, Zhou YC, Gao F, Zhang ZH, Xu H, et al. Aquaporin 3 promotes epithelial-mesenchymal transition in gastric cancer. J Exp Clin Cancer Res. 2014;33:38.

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Zhang Z, Chen Z, Song Y, Zhang P, Hu J, Bai C. Expression of aquaporin 5 increases proliferation and metastasis potential of lung cancer. J Pathol. 2010;221(2):210–20.

    CAS  PubMed  Google Scholar 

  25. Jung HJ, Park JY, Jeon HS, Kwon TH. Aquaporin-5: a marker protein for proliferation and migration of human breast cancer cells. PLoS One. 2011;6(12), e28492.

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Di Giusto G, Flamenco P, Rivarola V, Fernandez J, Melamud L, Ford P, et al. Aquaporin 2-increased renal cell proliferation is associated with cell volume regulation. J Cell Biochem. 2012;113(12):3721–9.

    PubMed  Google Scholar 

  27. Huang YH, Zhou XY, Wang HM, Xu H, Chen J, Lv NH. Aquaporin 5 promotes the proliferation and migration of human gastric carcinoma cells. Tumour Biol. 2013;34(3):1743–51.

    CAS  PubMed  Google Scholar 

  28. Goldschneider D, Mehlen P. Dependence receptors: a new paradigm in cell signaling and cancer therapy. Oncogene. 2010;29(13):1865–82.

    CAS  PubMed  Google Scholar 

  29. Perona R. Cell signalling: growth factors and tyrosine kinase receptors. Clin Transl Oncol. 2006;8(2):77–82.

    CAS  PubMed  Google Scholar 

  30. Higashiyama S, Iwabuki H, Morimoto C, Hieda M, Inoue H, Matsushita N. Membrane-anchored growth factors, the epidermal growth factor family: beyond receptor ligands. Cancer Sci. 2008;99(2):214–20.

    CAS  PubMed  Google Scholar 

  31. Sarfstein R, Werner H. Minireview: nuclear insulin and insulin-like growth factor-1 receptors: a novel paradigm in signal transduction. Endocrinology. 2013;154(5):1672–9.

    CAS  PubMed  Google Scholar 

  32. Kampen KR. Membrane proteins: the key players of a cancer cell. J Membr Biol. 2011;242(2):69–74.

    CAS  PubMed  Google Scholar 

  33. Chappell WH, Steelman LS, Long JM, Kempf RC, Abrams SL, Franklin RA, et al. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget. 2011;2(3):135–64.

    PubMed Central  PubMed  Google Scholar 

  34. Steelman LS, Chappell WH, Abrams SL, Kempf RC, Long J, Laidler P, et al. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging. 2011;3(3):192–222.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Bertelsen V, Stang E. The mysterious ways of ErbB2/HER2 trafficking. Membranes (Basel). 2014;4(3):424–46.

    Google Scholar 

  36. Roskoski Jr R. The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res. 2014;79:34–74.

    CAS  PubMed  Google Scholar 

  37. Carpenter G, Liao HJ. Trafficking of receptor tyrosine kinases to the nucleus. Exp Cell Res. 2009;315(9):1556–66.

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Johnson HM, Subramaniam PS, Olsnes S, Jans DA. Trafficking and signaling pathways of nuclear localizing protein ligands and their receptors. BioEssays. 2004;26(9):993–1004.

    CAS  PubMed  Google Scholar 

  39. Bryant DM, Stow JL. Nuclear translocation of cell-surface receptors: lessons from fibroblast growth factor. Traffic. 2005;6(10):947–54.

    CAS  PubMed  Google Scholar 

  40. Wang SC, Hung MC. Nuclear translocation of the epidermal growth factor receptor family membrane tyrosine kinase receptors. Clin Cancer Res. 2009;15(21):6484–9.

    CAS  PubMed  Google Scholar 

  41. Olsnes S, Klingenberg O, Wiedlocha A. Transport of exogenous growth factors and cytokines to the cytosol and to the nucleus. Physiol Rev. 2003;83(1):163–82.

    CAS  PubMed  Google Scholar 

  42. Planque N. Nuclear trafficking of secreted factors and cell-surface receptors: new pathways to regulate cell proliferation and differentiation, and involvement in cancers. Cell Commun Signal. 2006;4:7.

    PubMed Central  PubMed  Google Scholar 

  43. Lo HW, Hung MC. Nuclear EGFR signalling network in cancers: linking EGFR pathway to cell cycle progression, nitric oxide pathway and patient survival. Br J Cancer. 2006;94(2):184–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Polivka Jr J, Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther. 2014;142(2):164–75.

    CAS  PubMed  Google Scholar 

  45. Brechbiel J, Miller-Moslin K, Adjei AA. Crosstalk between hedgehog and other signaling pathways as a basis for combination therapies in cancer. Cancer Treat Rev. 2014;40(6):750–9.

    CAS  PubMed  Google Scholar 

  46. Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene. 2006;366(1):2–16.

    CAS  PubMed  Google Scholar 

  47. Palazzo A, Iacovelli R, Cortesi E. Past, present and future of targeted therapy in solid tumors. Curr Cancer Drug Targets. 2010;10(5):433–61.

    CAS  PubMed  Google Scholar 

  48. Bartek J, Lukas J. DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol. 2007;19(2):238–45.

    CAS  PubMed  Google Scholar 

  49. Bartek J, Lukas J. Mammalian G1- and S-phase checkpoints in response to DNA damage. Curr Opin Cell Biol. 2001;13(6):738–47.

    CAS  PubMed  Google Scholar 

  50. Massague J. G1 cell-cycle control and cancer. Nature. 2004;432(7015):298–306.

    CAS  PubMed  Google Scholar 

  51. Houtgraaf JH, Versmissen J, van der Giessen WJ. A concise review of DNA damage checkpoints and repair in mammalian cells. Cardiovasc Revasc Med. 2006;7(3):165–72.

    PubMed  Google Scholar 

  52. Ashwell S, Zabludoff S. DNA damage detection and repair pathways-recent advances with inhibitors of checkpoint kinases in cancer therapy. Clin Cancer Res. 2008;14(13):4032–7.

    CAS  PubMed  Google Scholar 

  53. Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature. 2004;432(7015):316–23.

    CAS  PubMed  Google Scholar 

  54. Poehlmann A, Roessner A. Importance of DNA damage checkpoints in the pathogenesis of human cancers. Pathol Res Pract. 2010;206(9):591–601.

    CAS  PubMed  Google Scholar 

  55. Aarts M, Linardopoulos S, Turner NC. Tumour selective targeting of cell cycle kinases for cancer treatment. Curr Opin Pharmacol. 2013;13(4):529–35.

    CAS  PubMed  Google Scholar 

  56. Acosta JC, Gil J. Senescence: a new weapon for cancer therapy. Trends Cell Biol. 2012;22(4):211–9.

    CAS  PubMed  Google Scholar 

  57. Gallorini M, Cataldi A, di Giacomo V. Cyclin-dependent kinase modulators and cancer therapy. BioDrugs. 2012;26(6):377–91.

    CAS  PubMed  Google Scholar 

  58. Sheppard KE, McArthur GA. The cell-cycle regulator CDK4: an emerging therapeutic target in melanoma. Clin Cancer Res. 2013;19(19):5320–8.

    CAS  PubMed  Google Scholar 

  59. Shcherba M, Liang Y, Fernandes D, Perez-Soler R, Cheng H. Cell cycle inhibitors for the treatment of NSCLC. Expert Opin Pharmacother. 2014;15(7):991–1004.

    CAS  PubMed  Google Scholar 

  60. Janssen A, Medema RH. Mitosis as an anti-cancer target. Oncogene. 2011;30(25):2799–809.

    CAS  PubMed  Google Scholar 

  61. Kaestner P, Bastians H. Mitotic drug targets. J Cell Biochem. 2010;111(2):258–65.

    CAS  PubMed  Google Scholar 

  62. Shortt J, Johnstone RW. Oncogenes in cell survival and cell death. Cold Spring Harb Perspect Biol. 2012;4(12).

    Google Scholar 

  63. Croce CM. Oncogenes and cancer. N Engl J Med. 2008;358(5):502–11.

    CAS  PubMed  Google Scholar 

  64. Bottos A, Bardelli A. Oncogenes and angiogenesis: a way to personalize anti-angiogenic therapy? Cell Mol Life Sci. 2013;70(21):4131–40.

    CAS  PubMed  Google Scholar 

  65. Guo XE, Ngo B, Modrek AS, Lee WH. Targeting tumor suppressor networks for cancer therapeutics. Curr Drug Targets. 2014;15(1):2–16.

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Stella GM, Luisetti M, Pozzi E, Comoglio PM. Oncogenes in non-small-cell lung cancer: emerging connections and novel therapeutic dynamics. Lancet Respir Med. 2013;1(3):251–61.

    CAS  PubMed  Google Scholar 

  67. Vicente-Duenas C, Romero-Camarero I, Cobaleda C, Sanchez-Garcia I. Function of oncogenes in cancer development: a changing paradigm. EMBO J. 2013;32(11):1502–13.

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Hong B, van den Heuvel AP, Prabhu VV, Zhang S, El-Deiry WS. Targeting tumor suppressor p53 for cancer therapy: strategies, challenges and opportunities. Curr Drug Targets. 2014;15(1):80–9.

    CAS  PubMed  Google Scholar 

  69. Avalos Y et al. Tumor suppression and promotion by autophagy. Biomed Res Int. 2014;2014:603980.

    PubMed Central  PubMed  Google Scholar 

  70. Merino D, Malkin D. p53 and hereditary cancer. Subcell Biochem. 2014;85:1–16.

    PubMed  Google Scholar 

  71. Zhang Q, Zeng SX, Lu H. Targeting p53-MDM2-MDMX loop for cancer therapy. Subcell Biochem. 2014;85:281–319.

    PubMed Central  PubMed  Google Scholar 

  72. Fatemian T, Chowdhury EH. Targeting oncogenes and tumor suppressors genes to mitigate chemoresistance. Curr Cancer Drug Targets. 2014;14(7):599–609.

    CAS  PubMed  Google Scholar 

  73. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–57.

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Wang S, Bai L, Lu J, Liu L, Yang CY, Sun H. Targeting inhibitors of apoptosis proteins (IAPs) for new breast cancer therapeutics. J Mammary Gland Biol Neoplasia. 2012;17(3-4):217–28.

    PubMed Central  PubMed  Google Scholar 

  75. de Almagro MC, Vucic D. The inhibitor of apoptosis (IAP) proteins are critical regulators of signaling pathways and targets for anti-cancer therapy. Exp Oncol. 2012;34(3):200–11.

    PubMed  Google Scholar 

  76. Fernald K, Kurokawa M. Evading apoptosis in cancer. Trends Cell Biol. 2013;23(12):620–33.

    PubMed Central  PubMed  Google Scholar 

  77. Rami MS. Apoptosis and pathological process. Lik Sprava. 2007;8:68–70.

    PubMed  Google Scholar 

  78. Krammer PH. CD95’s deadly mission in the immune system. Nature. 2000;407(6805):789–95.

    CAS  PubMed  Google Scholar 

  79. Maher S, Toomey D, Condron C, Bouchier-Hayes D. Activation-induced cell death: the controversial role of Fas and Fas ligand in immune privilege and tumour counterattack. Immunol Cell Biol. 2002;80(2):131–7.

    CAS  PubMed  Google Scholar 

  80. Arlt A, Muerkoster SS, Schafer H. Targeting apoptosis pathways in pancreatic cancer. Cancer Lett. 2013;332(2):346–58.

    CAS  PubMed  Google Scholar 

  81. Smolewski P, Robak T. Inhibitors of apoptosis proteins (IAPs) as potential molecular targets for therapy of hematological malignancies. Curr Mol Med. 2011;11(8):633–49.

    CAS  PubMed  Google Scholar 

  82. Condon SM, Mitsuuchi Y, Deng Y, LaPorte MG, Rippin SR, Haimowitz T, et al. Birinapant, a smac-mimetic with improved tolerability for the treatment of solid tumors and hematological malignancies. J Med Chem. 2014;57(9):3666–77.

    CAS  PubMed  Google Scholar 

  83. Sancar A. DNA repair in humans. Annu Rev Genet. 1995;29:69–105.

    CAS  PubMed  Google Scholar 

  84. Gospodinov A, Herceg Z. Chromatin structure in double strand break repair. DNA Repair. 2013;12(10):800–10.

    CAS  PubMed  Google Scholar 

  85. Pierce AJ, Stark JM, Araujo FD, Moynahan ME, Berwick M, Jasin M. Double-strand breaks and tumorigenesis. Trends Cell Biol. 2001;11(11):S52–9.

    CAS  PubMed  Google Scholar 

  86. Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell. 2010;40(2):179–204.

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Palombo F, Iaccarino I, Nakajima E, Ikejima M, Shimada T, Jiricny J. hMutSbeta, a heterodimer of hMSH2 and hMSH3, binds to insertion/deletion loops in DNA. Curr Biol. 1996;6(9):1181–4.

    CAS  PubMed  Google Scholar 

  88. Geiersbach KB, Samowitz WS. Microsatellite instability and colorectal cancer. Arch Pathol Lab Med. 2011;135(10):1269–77.

    CAS  PubMed  Google Scholar 

  89. Hegde M, Ferber M, Mao R, Samowitz W, Ganguly A. ACMG technical standards and guidelines for genetic testing for inherited colorectal cancer (Lynch syndrome, familial adenomatous polyposis, and MYH-associated polyposis). Genet Med. 2014;16(1):101–16.

    CAS  PubMed  Google Scholar 

  90. Longley MJ, Pierce AJ, Modrich P. DNA polymerase delta is required for human mismatch repair in vitro. J Biol Chem. 1997;272(16):10917–21.

    CAS  PubMed  Google Scholar 

  91. Christmann M, Tomicic MT, Roos WP, Kaina B. Mechanisms of human DNA repair: an update. Toxicology. 2003;193(1-2):3–34.

    CAS  PubMed  Google Scholar 

  92. Johnson RD, Jasin M. Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J. 2000;19(13):3398–407.

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Sonoda E, Takata M, Yamashita YM, Morrison C, Takeda S. Homologous DNA recombination in vertebrate cells. Proc Natl Acad Sci U S A. 2001;98(15):8388–94.

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Venkitaraman AR. Tracing the network connecting brca and fanconi anaemia proteins. Nat Rev Cancer. 2004;4(4):266–76.

    CAS  PubMed  Google Scholar 

  95. Cousineau I, Abaji C, Belmaaza A. BRCA1 regulates RAD51 function in response to DNA damage and suppresses spontaneous sister chromatid replication slippage: implications for sister chromatid cohesion, genome stability, and carcinogenesis. Cancer Res. 2005;65(24):11384–91.

    CAS  PubMed  Google Scholar 

  96. Scully R, Livingston DM. In search of the tumour-suppressor functions of BRCA1 and BRCA2. Nature. 2000;408(6811):429–32.

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Venkitaraman AR. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell. 2002;108(2):171–82.

    CAS  PubMed  Google Scholar 

  98. Ms M. Chromosome instability syndromes: lessons for carcinogenesis. Curr Top Microbiol Immunol. 1997;221:71–148.

    Google Scholar 

  99. Christ N, Moynahan M, Jasin M. BRCA2: safeguarding the genome through homologous recombination. In: Aguilera A, Rothstein R, editors. Molecular genetics of recombination, Topics in Current Genetics, vol. 17. Heidelberg: Springer; 2007. p. 363–80.

    Google Scholar 

  100. Pellegrini L, Venkitaraman A. Emerging functions of BRCA2 in DNA recombination. Trends Biochem Sci. 2004;29(6):310–6.

    CAS  PubMed  Google Scholar 

  101. Kennedy RD, D’Andrea AD. The Fanconi Anemia/BRCA pathway: new faces in the crowd. Genes Dev. 2005;19(24):2925–40.

    CAS  PubMed  Google Scholar 

  102. Minoo P. Toward a molecular classification of colorectal cancer: the role of MGMT. Front Oncol. 2013;3:266.

    PubMed Central  PubMed  Google Scholar 

  103. Frohling S, Dohner H. Chromosomal abnormalities in cancer. N Engl J Med. 2008;359(7):722–34.

    CAS  PubMed  Google Scholar 

  104. Nowell PC, Hungerford DA. Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst. 1960;25:85–109.

    CAS  PubMed  Google Scholar 

  105. Rowley JD. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243(5405):290–3.

    CAS  PubMed  Google Scholar 

  106. Trask BJ. Human cytogenetics: 46 chromosomes, 46 years and counting. Nat Rev Genet. 2002;3(10):769–78.

    CAS  PubMed  Google Scholar 

  107. Mitelman F, Mertens F, Johansson B. Prevalence estimates of recurrent balanced cytogenetic aberrations and gene fusions in unselected patients with neoplastic disorders. Genes Chromosomes Cancer. 2005;43(4):350–66.

    CAS  PubMed  Google Scholar 

  108. Albertson DG, Collins C, McCormick F, Gray JW. Chromosome aberrations in solid tumors. Nat Genet. 2003;34(4):369–76.

    CAS  PubMed  Google Scholar 

  109. Dawson MA, Kouzarides T, Huntly BJ. Targeting epigenetic readers in cancer. N Engl J Med. 2012;367(7):647–57.

    CAS  PubMed  Google Scholar 

  110. Lemon B, Tjian R. Orchestrated response: a symphony of transcription factors for gene control. Genes Dev. 2000;14(20):2551–69.

    CAS  PubMed  Google Scholar 

  111. Nair SS, Kumar R. Chromatin remodeling in cancer: a gateway to regulate gene transcription. Mol Oncol. 2012;6(6):611–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Ellis L, Atadja PW, Johnstone RW. Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther. 2009;8(6):1409–20.

    CAS  PubMed  Google Scholar 

  113. Gregory RI, Shiekhattar R. Chromatin modifiers and carcinogenesis. Trends Cell Biol. 2004;14(12):695–702.

    CAS  PubMed  Google Scholar 

  114. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128(4):683–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3(6):415–28.

    CAS  PubMed  Google Scholar 

  116. Bignold LP. Pathogenetic mechanisms of nuclear pleomorphism of tumour cells based on the mutator phenotype theory of carcinogenesis. Histol Histopathol. 2003;18(2):657–64.

    CAS  PubMed  Google Scholar 

  117. Forger 3rd JM, Choie DD, Friedberg EC. Non-histone chromosomal proteins of chemically transformed neoplastic cells in tissue culture. Cancer Res. 1976;36(1):258–62.

    CAS  PubMed  Google Scholar 

  118. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23(7):781–3.

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Bird A. Perceptions of epigenetics. Nature. 2007;447(7143):396–8.

    CAS  PubMed  Google Scholar 

  120. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer. 2004;4(2):143–53.

    CAS  PubMed  Google Scholar 

  121. Richardson B. Impact of aging on DNA methylation. Ageing Res Rev. 2003;2(3):245–61.

    CAS  PubMed  Google Scholar 

  122. Ogino S, Goel A. Molecular classification and correlates in colorectal cancer. J Mol Diagn. 2008;10(1):13–27.

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Ogino S, Kawasaki T, Kirkner GJ, Suemoto Y, Meyerhardt JA, Fuchs CS. Molecular correlates with MGMT promoter methylation and silencing support CpG island methylator phenotype-low (CIMP-low) in colorectal cancer. Gut. 2007;56(11):1564–71.

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983;301(5895):89–92.

    CAS  PubMed  Google Scholar 

  125. Liu WR, Shi YH, Peng YF, Fan J. Epigenetics of hepatocellular carcinoma: a new horizon. Chin Med J (Engl). 2012;125(13):2349–60.

    Google Scholar 

  126. Ren J, Singh BN, Huang Q, Li Z, Gao Y, Mishra P, et al. DNA hypermethylation as a chemotherapy target. Cell Signal. 2011;23(7):1082–93.

    CAS  PubMed  Google Scholar 

  127. Bhan A, Mandal SS. Long noncoding RNAs: emerging stars in gene regulation, epigenetics and human disease. ChemMedChem. 2014;9(9):1932–56.

    CAS  PubMed  Google Scholar 

  128. Huang T, Alvarez A, Hu B, Cheng SY. Noncoding RNAs in cancer and cancer stem cells. Chin J Cancer. 2013;32(11):582–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642–55.

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Li L, Liu Y. Diverse small non-coding RNAs in RNA interference pathways. Methods Mol Biol. 2011;764:169–82.

    CAS  PubMed  Google Scholar 

  131. Hagan JP, Croce CM. MicroRNAs in carcinogenesis. Cytogenet Genome Res. 2007;118(2-4):252–9.

    CAS  PubMed  Google Scholar 

  132. Wiemer EA. The role of microRNAs in cancer: no small matter. Eur J Cancer. 2007;43(10):1529–44.

    CAS  PubMed  Google Scholar 

  133. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–11.

    CAS  PubMed  Google Scholar 

  134. Medina PP, Slack FJ. microRNAs and cancer: an overview. Cell Cycle. 2008;7(16):2485–92.

    CAS  PubMed  Google Scholar 

  135. Rovira C, Guida MC, Cayota A. MicroRNAs and other small silencing RNAs in cancer. IUBMB Life. 2010;62(12):859–68.

    CAS  PubMed  Google Scholar 

  136. Scholzova E, Malik R, Sevcik J, Kleibl Z. RNA regulation and cancer development. Cancer Lett. 2007;246(1-2):12–23.

    CAS  PubMed  Google Scholar 

  137. Campbell TN, Choy FY. RNA interference: past, present and future. Curr Issues Mol Biol. 2005;7(1):1–6.

    CAS  PubMed  Google Scholar 

  138. Bora RS, Gupta D, Mukkur TK, Saini KS. RNA interference therapeutics for cancer: challenges and opportunities (review). Mol Med Rep. 2012;6(1):9–15.

    CAS  PubMed  Google Scholar 

  139. Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302(1):1–12.

    CAS  PubMed  Google Scholar 

  140. Maruyama R, Suzuki H. Long noncoding RNA involvement in cancer. BMB Rep. 2012;45(11):604–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  141. He Y, Meng XM, Huang C, Wu BM, Zhang L, Lv XW, et al. Long noncoding RNAs: novel insights into hepatocellular carcinoma. Cancer Lett. 2014;344(1):20–7.

    CAS  PubMed  Google Scholar 

  142. Cheetham SW, Gruhl F, Mattick JS, Dinger ME. Long noncoding RNAs and the genetics of cancer. Br J Cancer. 2013;108(12):2419–25.

    PubMed Central  CAS  PubMed  Google Scholar 

  143. Sanchez Y, Huarte M. Long non-coding RNAs: challenges for diagnosis and therapies. Nucl Acid Ther. 2013;23(1):15–20.

    CAS  Google Scholar 

  144. Shi X, Sun M, Liu H, Yao Y, Song Y. Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett. 2013;339(2):159–66.

    CAS  PubMed  Google Scholar 

  145. Aparicio S, Caldas C. The implications of clonal genome evolution for cancer medicine. N Engl J Med. 2013;368(9):842–51.

    CAS  PubMed  Google Scholar 

  146. Landau DA, Carter SL, Getz G, Wu CJ. Clonal evolution in hematological malignancies and therapeutic implications. Leukemia. 2014;28(1):34–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  147. Murugaesu N, Chew SK, Swanton C. Adapting clinical paradigms to the challenges of cancer clonal evolution. Am J Pathol. 2013;182(6):1962–71.

    PubMed  Google Scholar 

  148. Grove CS, Vassiliou GS. Acute myeloid leukaemia: a paradigm for the clonal evolution of cancer? Dis Models Mech. 2014;7(8):941–51.

    Google Scholar 

  149. Miller DG. On the nature of susceptibility to cancer. The presidential address. Cancer. 1980;46(6):1307–18.

    CAS  PubMed  Google Scholar 

  150. Nagy JA, Dvorak AM, Dvorak HF. VEGF-A and the induction of pathological angiogenesis. Annu Rev Pathol. 2007;2:251–75.

    CAS  PubMed  Google Scholar 

  151. Holmgren L, O’Reilly MS, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med. 1995;1(2):149–53.

    CAS  PubMed  Google Scholar 

  152. Claesson-Welsh L, Welsh M, Ito N, Anand-Apte B, Soker S, Zetter B, et al. Angiostatin induces endothelial cell apoptosis and activation of focal adhesion kinase independently of the integrin-binding motif RGD. Proc Natl Acad Sci U S A. 1998;95(10):5579–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  153. Liu CC, Shen Z, Kung HF, Lin MC. Cancer gene therapy targeting angiogenesis: an updated review. World J Gastroenterol. 2006;12(43):6941–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  154. Welti J, Loges S, Dimmeler S, Carmeliet P. Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J Clin Invest. 2013;123(8):3190–200.

    PubMed Central  CAS  PubMed  Google Scholar 

  155. Bruno A, Pagani A, Pulze L, Albini A, Dallaglio K, Noonan DM, et al. Orchestration of angiogenesis by immune cells. Front Oncol. 2014;4:131.

    PubMed Central  PubMed  Google Scholar 

  156. Tsai JH, Yang J. Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev. 2013;27(20):2192–206.

    PubMed Central  CAS  PubMed  Google Scholar 

  157. Wood SL, Pernemalm M, Crosbie PA, Whetton AD. The role of the tumor-microenvironment in lung cancer-metastasis and its relationship to potential therapeutic targets. Cancer Treat Rev. 2014;40(4):558–66.

    CAS  PubMed  Google Scholar 

  158. Alizadeh AM, Shiri S, Farsinejad S. Metastasis review: from bench to bedside. Tumour Biol. 2014;35(9):8483–523.

    PubMed  Google Scholar 

  159. Engers R, Gabbert HE. Mechanisms of tumor metastasis: cell biological aspects and clinical implications. J Cancer Res Clin Oncol. 2000;126(12):682–92.

    CAS  PubMed  Google Scholar 

  160. Mareel M, Leroy A. Clinical, cellular, and molecular aspects of cancer invasion. Physiol Rev. 2003;83(2):337–76.

    CAS  PubMed  Google Scholar 

  161. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410(6824):50–6.

    CAS  PubMed  Google Scholar 

  162. Woodhouse EC, Chuaqui RF, Liotta LA. General mechanisms of metastasis. Cancer. 1997;80(8 Suppl):1529–37.

    CAS  PubMed  Google Scholar 

  163. Ramaswamy S, Ross KN, Lander ES, Golub TR. A molecular signature of metastasis in primary solid tumors. Nat Genet. 2003;33(1):49–54.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dipti Surve M.D. or Michael O. Idowu M.D., M.P.H. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Surve, D., Idowu, M.O. (2015). Molecular Biology Basics in the “Omics” Era: Cancer Pathology. In: Idowu, M., Dumur, C., Garrett, C. (eds) Molecular Oncology Testing for Solid Tumors. Springer, Cham. https://doi.org/10.1007/978-3-319-16304-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16304-8_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16303-1

  • Online ISBN: 978-3-319-16304-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics