Skip to main content

Abstract

Due to the ubiquitous nature of L. monocytogenes, contamination of food processing facilities is common. Although transient contamination may be somewhat unavoidable, L. monocytogenes strains can persist for long periods of time and cause more serious problems, as described earlier. They often occur in the processing environment with little competition for space/ nutrients etc. from other bacteria. Sampling for L. monocytogenes in a processing environment is an important tool for identifying not only if L. monocytogenes contamination is present, but also if more than one L. monocytogenes strain is present and if the contamination is persistent. The EURL Lm has produced a guidance document on sampling premises for L. monocytogenes (EU 2012). Sampling of a food processing environment is best performed using a pre-moistened sponge swab stick for testing surfaces (Fig. 4.1) (both food contact surfaces and non-food contact surfaces) and sterile dippers for liquids. Swab samples should be taken from a surface of approximately 1 m2 if possible, in a zigzag pattern, and the swab then returned to its sterile bag for transport to the laboratory. Although it is important to focus on sampling areas which come into direct contact with food, other areas in which L. monocytogenes contamination would be expected, such as pooled water on the floor, drains, the under-side of shelves and trollies etc. should also be sampled as areas such as these often harbour strains which can spread contamination to food contact areas and subsequently to the food itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarnisalo K, Autio T, Sjoberg AM, Lunden J, Korkeala H, Suihko ML. Typing of Listeria monocytogenes isolates originating from the food processing industry with automated ribotyping and pulsed-field gel electrophoresis. J Food Prot. 2003;66(2):249–55.

    CAS  Google Scholar 

  • Alvarez-Ordóñez A, Prieto M. Fourier transform infrared spectroscopy in food microbiology. Springer briefs in food, health, and nutrition. 2012.

    Google Scholar 

  • Becker B, Schuler S, Lohneis M, Sabrowski A, Curtis GD, Holzapfel WH. Comparison of two chromogenic media for the detection of Listeria monocytogenes with the plating media recommended by EN/DIN 11290–1. Int J Food Microbiol. 2006;109(1–2):127–31. doi:10.1016/j.ijfoodmicro.2006.01.030.

    Article  CAS  Google Scholar 

  • Bille J, Catimel B, Bannerman E, Jacquet C, Yersin MN, Caniaux I, et al. API Listeria, a new and promising one-day system to identify Listeria isolates. Appl Environ Microbiol. 1992;58(6):1857–60.

    CAS  Google Scholar 

  • Borucki MK, Kim SH, Call DR, Smole SC, Pagotto F. Selective discrimination of Listeria monocytogenes epidemic strains by a mixed-genome DNA microarray compared to discrimination by pulsed-field gel electrophoresis, ribotyping, and multilocus sequence typing. J Clin Microbiol. 2004;42(11):5270–6. doi:10.1128/jcm.42.11.5270-5276.2004.

    Article  CAS  Google Scholar 

  • Chen Y, Zhang W, Knabel SJ. Multi-virulence-locus sequence typing identifies single nucleotide polymorphisms which differentiate epidemic clones and outbreak strains of Listeria monocytogenes. J Clin Microbiol. 2007;45(3):835–46. doi:10.1128/jcm.01575-06.

    Article  CAS  Google Scholar 

  • Chenal-Francisque V, Diancourt L, Cantinelli T, Passet V, Tran-Hykes C, Bracq-Dieye H, et al. Optimized multilocus variable-number tandem-repeat analysis assay and its complementarity with pulsed-field gel electrophoresis and multilocus sequence typing for Listeria monocytogenes clone identification and surveillance. J Clin Microbiol. 2013;51(6):1868–80. doi:10.1128/jcm.00606-13.

    Article  CAS  Google Scholar 

  • Dalmasso M, Bolocan AS, Hernandez M, Kapetanakou AE, Kuchta T, Manios SG, et al. Comparison of polymerase chain reaction methods and plating for analysis of enriched cultures of Listeria monocytogenes when using the ISO11290-1 method. J Microbiol Methods. 2014;98:8–14. http://dx.doi.org/10.1016/j.mimet.2013.12.018.

    Article  CAS  Google Scholar 

  • Davis R, Mauer LJ. Subtyping of Listeria monocytogenes at the haplotype level by Fourier transform infrared (FT-IR) spectroscopy and multivariate statistical analysis. Int J Food Microbiol. 2011;150(2–3):140–9. doi:10.1016/j.ijfoodmicro.2011.07.024.

    Article  Google Scholar 

  • De Lappe N, Lee C, O’Connor J, Cormican M. Misidentification of Listeria monocytogenes by the Vitek 2 system. J Clin Microbiol. 2014;52(9):3494–5. doi:10.1128/jcm.01725-14.

    Article  Google Scholar 

  • Doijad S, Lomonaco S, Poharkar K, Garg S, Knabel S, Barbuddhe S, et al. Multi-virulence-locus sequence typing of 4b Listeria monocytogenes isolates obtained from different sources in India over a 10-year period. Foodborne Pathog Dis. 2014;11(7):511–6. doi:10.1089/fpd.2013.1716.

    Article  Google Scholar 

  • Doumith M, Buchrieser C, Glaser P, Jacquet C, Martin P. Differentiation of the major Listeria monocytogenes serovars by multiplex PCR. J Clin Microbiol. 2004;42(8):3819–22. doi:10.1128/jcm.42.8.3819-3822.2004.

    Article  CAS  Google Scholar 

  • EU. Guidelines on sampling the food processing area and equipment for the detection of Listeria monocytogenes. http://ec.europa.eu/food/food/biosafety/salmonella/docs/guidelines_sampling_en.pdf (2012). Accessed 19 Jan 2015.

  • Fonnesbech Vogel B, Fussing V, Ojeniyi B, Gram L, Ahrens P. High-resolution genotyping of Listeria monocytogenes by fluorescent amplified fragment length polymorphism analysis compared to pulsed-field gel electrophoresis, random amplified polymorphic DNA analysis, ribotyping, and PCR-restriction fragment length polymorphism analysis. J Food Prot. 2004;67(8):1656–65.

    CAS  Google Scholar 

  • Fox EM, deLappe N, Garvey P, McKeown P, Cormican M, Leonard N, et al. PFGE analysis of Listeria monocytogenes isolates of clinical, animal, food and environmental origin from Ireland. J Med Microbiol. 2012;61(Pt 4):540–7. doi:10.1099/jmm.0.036764-0.

  • Gawade L, Barbuddhe SB, Bhosle S. Isolation and confirmation of Listeria species from seafood off Goa region by polymerase chain reaction. Indian J Microbiol. 2010;50(4):385–9. doi:10.1007/s12088-011-0064-y.

    Article  Google Scholar 

  • Gómez D, McGuinness S, Reddington K, O’Grady J, Yangüela J, Barry T. Evaluation of a novel Listeria enrichment broth combined with a real-time PCR diagnostics assay for the specific detection of Listeria monocytogenes in RTE pork products. Int J Food Sci Technol. 2013;48(5):1103–8. doi:10.1111/ijfs.12053.

    Article  Google Scholar 

  • Grif K, Heller I, Wagner M, Dierich M, Wurzner R. A comparison of Listeria monocytogenes serovar 4b isolates of clinical and food origin in Austria by automated ribotyping and pulsed-field gel electrophoresis. Foodborne Pathog Dis. 2006;3(1):138–41. doi:10.1089/fpd.2006.3.138.

    Article  CAS  Google Scholar 

  • Holch A, Webb K, Lukjancenko O, Ussery D, Rosenthal BM, Gram L. Genome sequencing identifies two nearly unchanged strains of persistent Listeria monocytogenes isolated at two different fish processing plants sampled 6 years apart. Appl Environ Microbiol. 2013;79(9):2944–51. doi:10.1128/aem.03715-12.

    Article  CAS  Google Scholar 

  • Hurley D, Luque-Sastre L, DeLappe N, Moore JE, Cormican M, Jordan KN, et al. Comparison of Listeria monocytogenes isolates across the island of Ireland. J Food Prot. 2014;77(8):1402–6. doi:10.4315/0362-028X.JFP-14-026.

    Article  Google Scholar 

  • Kerouanton A, Brisabois A, Denoyer E, Dilasser F, Grout J, Salvat G, et al. Comparison of five typing methods for the epidemiological study of Listeria monocytogenes. Int J Food Microbiol. 1998;43(1–2):61–71. http://dx.doi.org/10.1016/S0168-1605(98)00098-1.

    Article  CAS  Google Scholar 

  • Leong D, Alvarez-Ordonez A, Jordan K. Monitoring occurrence and persistence of Listeria monocytogenes in foods and food processing environments in the Republic of Ireland. Front Microbiol. 2014;5. doi:10.3389/fmicb.2014.00436

  • Louie M, Jayaratne P, Luchsinger I, Devenish J, Yao J, Schlech W, et al. Comparison of ribotyping, arbitrarily primed PCR, and pulsed-field gel electrophoresis for molecular typing of Listeria monocytogenes. J Clin Microbiol. 1996;34(1):15–9.

    CAS  Google Scholar 

  • Lukinmaa S, Aarnisalo K, Suihko ML, Siitonen A. Diversity of Listeria monocytogenes isolates of human and food origin studied by serotyping, automated ribotyping and pulsed-field gel electrophoresis. Clin Microbiol Infect. 2004;10(6):562–8. doi:10.1111/j.1469-0691.2004.00876.x.

    Article  CAS  Google Scholar 

  • Martin B, Perich A, Gomez D, Yanguela J, Rodriguez A, Garriga M, et al. Diversity and distribution of Listeria monocytogenes in meat processing plants. Food Microbiol. 2014;44:119–27. doi:10.1016/j.fm.2014.05.014.

    Article  Google Scholar 

  • McClain D, Lee WH. Development of USDA-FSIS method for isolation of Listeria monocytogenes from raw meat and poultry. J Assoc Off Anal Chem. 1988;71(3):660–4.

    CAS  Google Scholar 

  • Morton J, Karoonuthaisiri N, Charlermroj R, Stewart LD, Elliott CT, Grant IR. Phage display-derived binders able to distinguish Listeria monocytogenes from other Listeria species. PLoS One. 2013;8(9):e74312. doi:10.1371/journal.pone.0074312.

    Article  CAS  Google Scholar 

  • Murphy M, Corcoran D, Buckley JF, O’Mahony M, Whyte P, Fanning S. Development and application of multiple-locus variable number of tandem repeat analysis (MLVA) to subtype a collection of Listeria monocytogenes. Int J Food Microbiol. 2007;115(2):187–94. http://dx.doi.org/10.1016/j.ijfoodmicro.2006.10.022.

    Article  CAS  Google Scholar 

  • Nucera D, Lomonaco S, Bianchi DM, Decastelli L, Grassi MA, Bottero MT, et al. A five year surveillance report on PFGE types of Listeria monocytogenes isolated in Italy from food and food related environments. Int J Food Microbiol. 2010;140(2–3):271–6. doi:10.1016/j.ijfoodmicro.2010.04.016.

    Article  Google Scholar 

  • Orsi RH, den Bakker HC, Wiedmann M. Listeria monocytogenes lineages: genomics, evolution, ecology, and phenotypic characteristics. Int J Med Microbiol. 2011;301(2):79–96. doi:10.1016/j.ijmm.2010.05.002.

    Article  CAS  Google Scholar 

  • Paul M, Baranzoni GM, Albonetti S, Brewster JD. Direct, quantitative detection of Listeria monocytogenes in fresh raw whole milk by qPCR. Int Dairy J. 2014(0). http://dx.doi.org/10.1016/j.idairyj.2014.09.008

  • PulseNetUSA. International Standard PulseNet protocol. http://www.cdc.gov/pulsenet/pathogens/listeria.html (2009). Accessed 23 Apr 2014.

  • Ragon M, Wirth T, Hollandt F, Lavenir R, Lecuit M, Le Monnier A, et al. A new perspective on Listeria monocytogenes evolution. Plos Pathog. 2008;4(9):e1000146. doi:10.1371/journal.ppat.1000146.

    Article  Google Scholar 

  • Rodriguez-Lazaro D, Hernandez M, Scortti M, Esteve T, Vazquez-Boland JA, Pla M. Quantitative detection of Listeria monocytogenes and Listeria innocua by real-time PCR: assessment of hly, iap, and lin02483 targets and AmpliFluor technology. Appl Environ Microbiol. 2004;70(3):1366–77.

    Article  CAS  Google Scholar 

  • Rossmanith P, Mester P, Wagner M, Schoder D. Demonstration of the effective performance of a combined enrichment/real-time PCR method targeting the prfA gene of Listeria monocytogenes by testing fresh naturally contaminated acid curd cheese. Lett Appl Microbiol. 2010;51(4):480–4. doi:10.1111/j.1472-765X.2010.02925.x.

    Article  CAS  Google Scholar 

  • Rychli K, Muller A, Zaiser A, Schoder D, Allerberger F, Wagner M, et al. Genome sequencing of Listeria monocytogenes “Quargel” listeriosis outbreak strains reveals two different strains with distinct in vitro virulence potential. PLoS One. 2014;9(2):e89964. doi:10.1371/journal.pone.0089964.

    Article  Google Scholar 

  • Shen J, Rump L, Zhang Y, Chen Y, Wang X, Meng J. Molecular subtyping and virulence gene analysis of Listeria monocytogenes isolates from food. Food Microbiol. 2013;35(1):58–64. doi:10.1016/j.fm.2013.02.014.

    Article  CAS  Google Scholar 

  • Sperry KE, Kathariou S, Edwards JS, Wolf LA. Multiple-locus variable-number tandem-repeat analysis as a tool for subtyping Listeria monocytogenes strains. J Clin Microbiol. 2008;46(4):1435–50. doi:10.1128/jcm.02207-07.

    Article  CAS  Google Scholar 

  • Stessl B, Fricker M, Fox E, Karpiskova R, Demnerova K, Jordan K, et al. Collaborative survey on the colonization of different types of cheese-processing facilities with Listeria monocytogenes. Foodborne Pathog Dis. 2014;11(1):8–14. doi:10.1089/fpd.2013.1578.

    Article  Google Scholar 

  • Vongkamjan K, Roof S, Stasiewicz MJ, Wiedmann M. Persistent Listeria monocytogenes subtypes isolated from a smoked fish processing facility included both phage susceptible and resistant isolates. Food Microbiol. 2013;35(1):38–48. doi:10.1016/j.fm.2013.02.012.

    Article  Google Scholar 

  • Wang Y, Zhao A, Zhu R, Lan R, Jin D, Cui Z, et al. Genetic diversity and molecular typing of Listeria monocytogenes in China. BMC Microbiol. 2012;12:119. doi:10.1186/1471-2180-12-119.

    Article  CAS  Google Scholar 

  • Wang G, Qian W, Zhang X, Wang H, Ye K, Bai Y, et al. Prevalence, genetic diversity and antimicrobial resistance of Listeria monocytogenes isolated from ready-to-eat meat products in Nanjing. China Food Control. 2015;50:202–8. http://dx.doi.org/10.1016/j.foodcont.2014.07.057.

    Article  CAS  Google Scholar 

  • Zhang L, Yan Z, Ryser ET. Impact of dilution ratios on Listeria monocytogenes growth during University of Vermont medium enrichment of deli meats. J Food Prot. 2007;70(11):2656–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Jordan, K., Leong, D., Álvarez Ordóñez, A. (2015). Sampling and Laboratory Analysis. In: Listeria monocytogenes in the Food Processing Environment. SpringerBriefs in Food, Health, and Nutrition. Springer, Cham. https://doi.org/10.1007/978-3-319-16286-7_4

Download citation

Publish with us

Policies and ethics