Skip to main content

The Hope for iPSC in Lung Stem Cell Therapy and Disease Modeling

  • Chapter
Lung Stem Cells in the Epithelium and Vasculature

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

The discovery of induced pluripotent stem cell technology has provided revolutionary access to human biology. Studying human lung disease is notoriously difficult; iPSC provide the potential for the generation of reproducible systems for investigating the cellular, molecular, and genetic mechanisms that lead to the development and pathogenesis of human lung disease. In the future, this technology holds great potential for the development of novel screening techniques and even cell-based therapeutic approaches for human lung disease. This chapter discusses how iPSC and gene editing technologies are being applied to study human lung disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

3D:

Three dimensional

AAV:

Adeno-associated virus

AD:

Alzheimer’s disease

AFE:

Anterior foregut endoderm

ALI:

Air–liquid interface

ATI/II:

Alveolar type I /II cells

BMP4:

Bone morphogenic protein 4

Bromo cAMP:

Bromo cyclin adenosine monophosphate

CC10:

Club cell 10 kDa protein

CD54:

Cluster of differentiation factor 54 (aka: ICAM-1 (intercellular adhesion molecule 1))

CDX2:

Caudal type homeobox 2

CFTR:

Cystic fibrosis transmembrane regulator

ChIP:

Chromatin immuno precipitation

CK5:

Cytokeratin 5

COPD:

Chronic obstructive pulmonary disease

CRISPR:

Clustered regularly interspersed short palindromic repeats

DE:

Definitive endoderm

DSB:

Double-stranded break

EGF:

Epidermal growth factor

ESCs:

Embryonic stem cells

FD:

Familial dysautonomia

FGF10:

Fibroblast growth factor 10

FOXA2:

Forkhead box A2

FOXJ1:

Forkhead box J1

gRNA:

Guide ribonucleic acid

HR:

Homologous recombination

iPSC:

Induced pluripotent stem cells

KGF:

Keratinocyte growth factor (aka: FGF7)

KLF4:

Kruppel-like factor 4

MAPK/ERK:

Mitogen-activated protein kinase/extracellular signal-regulated kinase

MCC:

Multiciliated cell

MUC5AC:

Mucin 5 AC

NHEJ:

Non-homologous end joining

Nkx2.1:

NK2 homeobox 1 (aka: TTF1 thyroid transcription factor 1)

OCT4:

Octamer-binding transcription factor 4 (aka: POU5F1 (POU domain class 5, transcription factor 1))

PCD:

Primary ciliary dyskinesia

RA:

Retinoic acid

SCZD:

Schizophrenia

SHH:

Sonic hedgehog

SMA:

Spinal muscular atrophy

SOX2:

Sex-determining region Y box2

T-1α:

aka: Podoplanin

TALEN:

Transcription activator-like effector nuclease

TGFβ:

Transforming growth factor beta

Wnt3a:

Wingless-type MMTV integration site family member 3A

ZFNs:

Zinc finger nucleases

References

  • Agarwal S, Loh YH, McLoughlin EM, Huang J, Park IH, Miller JD, Huo H, Okuka M, Dos Reis RM, Loewer S, Ng HH, Keefe DL, Goldman FD, Klingelhutz AJ, Liu L, Daley GQ (2010) Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients. Nature 464(7286):292–296. doi:10.1038/nature08792

    PubMed Central  CAS  PubMed  Google Scholar 

  • Badylak SF, Weiss DJ, Caplan A, Macchiarini P (2012) Engineered whole organs and complex tissues. Lancet 379(9819):943–952. doi:10.1016/S0140-6736(12)60073-7

    PubMed  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712. doi:10.1126/science.1138140

    CAS  PubMed  Google Scholar 

  • Bibikova M, Carroll D, Segal DJ, Trautman JK, Smith J, Kim YG, Chandrasegaran S (2001) Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol 21(1):289–297. doi:10.1128/MCB.21.1.289-297.2001

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bibikova M, Golic M, Golic KG, Carroll D (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161(3):1169–1175

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300(5620):764. doi:10.1126/science.1079512

    CAS  PubMed  Google Scholar 

  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959):1509–1512. doi:10.1126/science.1178811

    CAS  PubMed  Google Scholar 

  • Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151(Pt 8):2551–2561. doi:10.1099/mic.0.28048-0

    CAS  PubMed  Google Scholar 

  • Bradley A, Evans M, Kaufman MH, Robertson E (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309(5965):255–256

    CAS  PubMed  Google Scholar 

  • Brambrink T, Foreman R, Welstead GG, Lengner CJ, Wernig M, Suh H, Jaenisch R (2008) Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell 2(2):151–159. doi:10.1016/j.stem.2008.01.004

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, Li Y, Mu Y, Chen G, Yu D, McCarthy S, Sebat J, Gage FH (2011) Modelling schizophrenia using human induced pluripotent stem cells. Nature 473(7346):221–225. doi:10.1038/nature09915

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV, van der Oost J (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321(5891):960–964. doi:10.1126/science.1159689

    CAS  PubMed  Google Scholar 

  • Cahan P, Li H, Morris SA, Lummertz da Rocha E, Daley GQ, Collins JJ (2014) Cell net: network biology applied to stem cell engineering. Cell 158(4):903–915. doi:10.1016/j.cell.2014.07.020

    CAS  PubMed  Google Scholar 

  • Capecchi MR (1989) Altering the genome by homologous recombination. Science 244(4910):1288–1292

    CAS  PubMed  Google Scholar 

  • Carey BW, Markoulaki S, Hanna J, Saha K, Gao Q, Mitalipova M, Jaenisch R (2009) Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc Natl Acad Sci U S A 106(1):157–162. doi:10.1073/pnas.0811426106

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carvajal-Vergara X, Sevilla A, D’Souza SL, Ang YS, Schaniel C, Lee DF, Yang L, Kaplan AD, Adler ED, Rozov R, Ge Y, Cohen N, Edelmann LJ, Chang B, Waghray A, Su J, Pardo S, Lichtenbelt KD, Tartaglia M, Gelb BD, Lemischka IR (2010) Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature 465(7299):808–812. doi:10.1038/nature09005

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chang CW, Lai YS, Pawlik KM, Liu K, Sun CW, Li C, Schoeb TR, Townes TM (2009) Polycistronic lentiviral vector for “hit and run” reprogramming of adult skin fibroblasts to induced pluripotent stem cells. Stem Cells 27(5):1042–1049. doi:10.1002/stem.39

    CAS  PubMed  Google Scholar 

  • Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, Park J, Blackburn EH, Weissman JS, Qi LS, Huang B (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155(7):1479–1491. doi:10.1016/j.cell.2013.12.001

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chin MH, Pellegrini M, Plath K, Lowry WE (2010) Molecular analyses of human induced pluripotent stem cells and embryonic stem cells. Cell Stem Cell 7(2):263–269. doi:10.1016/j.stem.2010.06.019

    PubMed Central  CAS  PubMed  Google Scholar 

  • Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):757–761. doi:10.1534/genetics.110.120717

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. doi:10.1126/science.1231143

    PubMed Central  CAS  PubMed  Google Scholar 

  • D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24(11):1392–1401. doi:10.1038/nbt1259

    PubMed  Google Scholar 

  • Deveau H, Barrangou R, Garneau JE, Labonte J, Fremaux C, Boyaval P, Romero DA, Horvath P, Moineau S (2008) Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190(4):1390–1400. doi:10.1128/JB.01412-07

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE, Eggan K (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321(5893):1218–1221. doi:10.1126/science.1158799

    CAS  PubMed  Google Scholar 

  • Ebert AD, Yu J, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA, Svendsen CN (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457(7227):277–280. doi:10.1038/nature07677

    PubMed Central  CAS  PubMed  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156

    CAS  PubMed  Google Scholar 

  • Firth AL, Dargitz CT, Qualls SJ, Menon T, Wright R, Singer O, Gage FH, Khanna A, Verma IM (2014) Generation of multiciliated cells in functional airway epithelia from human induced pluripotent stem cells. Proc Natl Acad Sci U S A 111(17):E1723–E1730. doi:10.1073/pnas.1403470111

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fishman JM, Ansari T, Sibbons P, De Coppi P, Birchall MA (2012) Decellularized rabbit cricoarytenoid dorsalis muscle for laryngeal regeneration. Ann Otol Rhinol Laryngol 121(2):129–138

    PubMed  Google Scholar 

  • Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85(8):348–362

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gadue P, Huber TL, Paddison PJ, Keller GM (2006) Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc Natl Acad Sci U S A 103(45):16806–16811. doi:10.1073/pnas.0603916103

    PubMed Central  CAS  PubMed  Google Scholar 

  • Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadan AH, Moineau S (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468(7320):67–71. doi:10.1038/nature09523

    CAS  PubMed  Google Scholar 

  • Ghaedi M, Calle EA, Mendez JJ, Gard AL, Balestrini J, Booth A, Bove PF, Gui L, White ES, Niklason LE (2013) Human iPS cell-derived alveolar epithelium repopulates lung extracellular matrix. J Clin Invest 123(11):4950–4962. doi:10.1172/JCI68793

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ghaedi M, Mendez JJ, Bove PF, Sivarapatna A, Raredon MS, Niklason LE (2014) Alveolar epithelial differentiation of human induced pluripotent stem cells in a rotating bioreactor. Biomaterials 35(2):699–710. doi:10.1016/j.biomaterials.2013.10.018

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ghodsizadeh A, Taei A, Totonchi M, Seifinejad A, Gourabi H, Pournasr B, Aghdami N, Malekzadeh R, Almadani N, Salekdeh GH, Baharvand H (2010) Generation of liver disease-specific induced pluripotent stem cells along with efficient differentiation to functional hepatocyte-like cells. Stem Cell Rev 6(4):622–632. doi:10.1007/s12015-010-9189-3

    PubMed  Google Scholar 

  • Gomperts BN (2014) Induction of multiciliated cells from induced pluripotent stem cells. Proc Natl Acad Sci U S A 111(17):6120–6121. doi:10.1073/pnas.1404414111

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gonzalez F, Zhu Z, Shi ZD, Lelli K, Verma N, Li QV, Huangfu D (2014) An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell 15(2):215–226. doi:10.1016/j.stem.2014.05.018

    CAS  PubMed  Google Scholar 

  • Gouon-Evans V, Boussemart L, Gadue P, Nierhoff D, Koehler CI, Kubo A, Shafritz DA, Keller G (2006) BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm. Nat Biotechnol 24(11):1402–1411. doi:10.1038/nbt1258

    CAS  PubMed  Google Scholar 

  • Green MD, Chen A, Nostro MC, d’Souza SL, Schaniel C, Lemischka IR, Gouon-Evans V, Keller G, Snoeck HW (2011) Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nat Biotechnol 29(3):267–272. doi:10.1038/nbt.1788

    CAS  PubMed  Google Scholar 

  • Green MD, Huang SX, Snoeck HW (2013) Stem cells of the respiratory system: from identification to differentiation into functional epithelium. Bioessays 35(3):261–270. doi:10.1002/bies.201200090

    CAS  PubMed  Google Scholar 

  • Guo L, Abrams RM, Babiarz JE, Cohen JD, Kameoka S, Sanders MJ, Chiao E, Kolaja KL (2011) Estimating the risk of drug-induced proarrhythmia using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci 123(1):281–289. doi:10.1093/toxsci/kfr158

    CAS  PubMed  Google Scholar 

  • Gurdon JB (1975) Nuclear transplantation and the analysis of gene activity in early amphibian development. Adv Exp Med Biol 62:35–44

    CAS  PubMed  Google Scholar 

  • Haft DH, Selengut J, Mongodin EF, Nelson KE (2005) A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 1(6):e60. doi:10.1371/journal.pcbi.0010060

    PubMed Central  PubMed  Google Scholar 

  • Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278. doi:10.1016/j.cell.2014.05.010

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang SX, Islam MN, O’Neill J, Hu Z, Yang YG, Chen YW, Mumau M, Green MD, Vunjak-Novakovic G, Bhattacharya J, Snoeck HW (2013) Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat Biotechnol. doi:10.1038/nbt.2754

    Google Scholar 

  • Huang SX, Islam MN, O’Neill J, Hu Z, Yang YG, Chen YW, Mumau M, Green MD, Vunjak-Novakovic G, Bhattacharya J, Snoeck HW (2014) Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat Biotechnol 32(1):84–91. doi:10.1038/nbt.2754

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, Muhlestein W, Melton DA (2008) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26(11):1269–1275. doi:10.1038/nbt.1502

    CAS  PubMed  Google Scholar 

  • Inoue H, Yamanaka S (2011) The use of induced pluripotent stem cells in drug development. Clin Pharmacol Ther 89(5):655–661. doi:10.1038/clpt.2011.38

    CAS  PubMed  Google Scholar 

  • Inoue H, Nagata N, Kurokawa H, Yamanaka S (2014) iPS cells: a game changer for future medicine. EMBO J 33(5):409–417. doi:10.1002/embj.201387098

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169(12):5429–5433

    PubMed Central  CAS  PubMed  Google Scholar 

  • Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O, Winterstern A, Feldman O, Gepstein A, Arbel G, Hammerman H, Boulos M, Gepstein L (2011) Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471(7337):225–229. doi:10.1038/nature09747

    CAS  PubMed  Google Scholar 

  • Jang J, Kang HC, Kim HS, Kim JY, Huh YJ, Kim DS, Yoo JE, Lee JA, Lim B, Lee J, Yoon TM, Park IH, Hwang DY, Daley GQ, Kim DW (2011) Induced pluripotent stem cell models from X-linked adrenoleukodystrophy patients. Ann Neurol 70(3):402–409. doi:10.1002/ana.22486

    PubMed  Google Scholar 

  • Jansen R, Embden JD, Gaastra W, Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43(6):1565–1575

    CAS  PubMed  Google Scholar 

  • Jia F, Wilson KD, Sun N, Gupta DM, Huang M, Li Z, Panetta NJ, Chen ZY, Robbins RC, Kay MA, Longaker MT, Wu JC (2010) A nonviral minicircle vector for deriving human iPS cells. Nat Methods 7(3):197–199. doi:10.1038/nmeth.1426

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jin ZB, Okamoto S, Osakada F, Homma K, Assawachananont J, Hirami Y, Iwata T, Takahashi M (2011) Modeling retinal degeneration using patient-specific induced pluripotent stem cells. PLoS One 6(2):e17084. doi:10.1371/journal.pone.0017084

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. doi:10.1126/science.1225829

    CAS  PubMed  Google Scholar 

  • Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S, Kaplan M, Iavarone AT, Charpentier E, Nogales E, Doudna JA (2014) Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343(6176):1247997. doi:10.1126/science.1247997

    PubMed Central  PubMed  Google Scholar 

  • Jurisch-Yaksi N, Rose AJ, Lu H, Raemaekers T, Munck S, Baatsen P, Baert V, Vermeire W, Scales SJ, Verleyen D, Vandepoel R, Tylzanowski P, Yaksi E, de Ravel T, Yost HJ, Froyen G, Arrington CB, Annaert W (2013) Rer1p maintains ciliary length and signaling by regulating gamma-secretase activity and Foxj1a levels. J Cell Biol 200(6):709–720. doi:10.1083/jcb.201208175

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kadzik RS, Morrisey EE (2012) Directing lung endoderm differentiation in pluripotent stem cells. Cell Stem Cell 10(4):355–361. doi:10.1016/j.stem.2012.03.013

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458(7239):771–775. doi:10.1038/nature07864

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kawagoe S, Higuchi T, Meng XL, Shimada Y, Shimizu H, Hirayama R, Fukuda T, Chang H, Nakahata T, Fukada S, Ida H, Kobayashi H, Ohashi T, Eto Y (2011) Generation of induced pluripotent stem (iPS) cells derived from a murine model of Pompe disease and differentiation of Pompe-iPS cells into skeletal muscle cells. Mol Genet Metab 104(1–2):123–128. doi:10.1016/j.ymgme.2011.05.020

    CAS  PubMed  Google Scholar 

  • Khan IF, Hirata RK, Wang PR, Li Y, Kho J, Nelson A, Huo Y, Zavaljevski M, Ware C, Russell DW (2010) Engineering of human pluripotent stem cells by AAV-mediated gene targeting. Mol Ther 18(6):1192–1199. doi:10.1038/mt.2010.55

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93(3):1156–1160

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4(6):472–476. doi:10.1016/j.stem.2009.05.005

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LI, Yabuuchi A, Takeuchi A, Cunniff KC, Hongguang H, McKinney-Freeman S, Naveiras O, Yoon TJ, Irizarry RA, Jung N, Seita J, Hanna J, Murakami P, Jaenisch R, Weissleder R, Orkin SH, Weissman IL, Feinberg AP, Daley GQ (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467(7313):285–290. doi:10.1038/nature09342

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lachmann N, Happle C, Ackermann M, Luttge D, Wetzke M, Merkert S, Hetzel M, Kensah G, Jara-Avaca M, Mucci A, Skuljec J, Dittrich AM, Pfaff N, Brennig S, Schambach A, Steinemann D, Gohring G, Cantz T, Martin U, Schwerk N, Hansen G, Moritz T (2014) Gene correction of human induced pluripotent stem cells repairs the cellular phenotype in pulmonary alveolar proteinosis. Am J Respir Crit Care Med 189(2):167–182. doi:10.1164/rccm.201306-1012OC

    CAS  PubMed  Google Scholar 

  • Lahti AL, Kujala VJ, Chapman H, Koivisto AP, Pekkanen-Mattila M, Kerkela E, Hyttinen J, Kontula K, Swan H, Conklin BR, Yamanaka S, Silvennoinen O, Aalto-Setala K (2012) Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture. Dis Model Mech 5(2):220–230. doi:10.1242/dmm.008409

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee G, Studer L (2011) Modelling familial dysautonomia in human induced pluripotent stem cells. Philos Trans R Soc Lond B Biol Sci 366(1575):2286–2296. doi:10.1098/rstb.2011.0026

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee G, Papapetrou EP, Kim H, Chambers SM, Tomishima MJ, Fasano CA, Ganat YM, Menon J, Shimizu F, Viale A, Tabar V, Sadelain M, Studer L (2009) Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461(7262):402–406. doi:10.1038/nature08320

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu J, Verma PJ, Evans-Galea MV, Delatycki MB, Michalska A, Leung J, Crombie D, Sarsero JP, Williamson R, Dottori M, Pebay A (2011) Generation of induced pluripotent stem cell lines from Friedreich ataxia patients. Stem Cell Rev 7(3):703–713. doi:10.1007/s12015-010-9210-x

    CAS  PubMed  Google Scholar 

  • Longmire TA, Ikonomou L, Hawkins F, Christodoulou C, Cao Y, Jean JC, Kwok LW, Mou H, Rajagopal J, Shen SS, Dowton AA, Serra M, Weiss DJ, Green MD, Snoeck HW, Ramirez MI, Kotton DN (2012) Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell Stem Cell 10(4):398–411. doi:10.1016/j.stem.2012.01.019

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ma D, Wei H, Lu J, Ho S, Zhang G, Sun X, Oh Y, Tan SH, Ng ML, Shim W, Wong P, Liew R (2013) Generation of patient-specific induced pluripotent stem cell-derived cardiomyocytes as a cellular model of arrhythmogenic right ventricular cardiomyopathy. Eur Heart J 34(15):1122–1133. doi:10.1093/eurheartj/ehs226

    CAS  PubMed  Google Scholar 

  • Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK (2013) CRISPR RNA-guided activation of endogenous human genes. Nat Methods 10(10):977–979. doi:10.1038/nmeth.2598

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maehr R, Chen S, Snitow M, Ludwig T, Yagasaki L, Goland R, Leibel RL, Melton DA (2009) Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci U S A 106(37):15768–15773. doi:10.1073/pnas.0906894106

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R, Plath K, Hochedlinger K (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1(1):55–70. doi:10.1016/j.stem.2007.05.014

    CAS  PubMed  Google Scholar 

  • Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10(10):957–963. doi:10.1038/nmeth.2649

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marcet B, Chevalier B, Coraux C, Kodjabachian L, Barbry P (2011) MicroRNA-based silencing of Delta/Notch signaling promotes multiple cilia formation. Cell Cycle 10(17):2858–2864

    CAS  PubMed  Google Scholar 

  • Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, Chen G, Gage FH, Muotri AR (2010) A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143(4):527–539. doi:10.1016/j.cell.2010.10.016

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marshall WF (2008) Basal bodies platforms for building cilia. Curr Top Dev Biol 85:1–22. doi:10.1016/S0070-2153(08)00801-6

    CAS  PubMed  Google Scholar 

  • Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78(12):7634–7638

    PubMed Central  CAS  PubMed  Google Scholar 

  • McCurry KR, Shearon TH, Edwards LB, Chan KM, Sweet SC, Valapour M, Yusen R, Murray S (2009) Lung transplantation in the United States, 1998–2007. Am J Transplant 9(4 Pt 2):942–958. doi:10.1111/j.1600-6143.2009.02569.x

    CAS  PubMed  Google Scholar 

  • Medine CN, Lucendo-Villarin B, Storck C, Wang F, Szkolnicka D, Khan F, Pernagallo S, Black JR, Marriage HM, Ross JA, Bradley M, Iredale JP, Flint O, Hay DC (2013) Developing high-fidelity hepatotoxicity models from pluripotent stem cells. Stem Cells Transl Med 2(7):505–509. doi:10.5966/sctm.2012-0138

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mekhoubad S, Bock C, de Boer AS, Kiskinis E, Meissner A, Eggan K (2012) Erosion of dosage compensation impacts human iPSC disease modeling. Cell Stem Cell 10(5):595–609. doi:10.1016/j.stem.2012.02.014

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mendenhall EM, Williamson KE, Reyon D, Zou JY, Ram O, Joung JK, Bernstein BE (2013) Locus-specific editing of histone modifications at endogenous enhancers. Nat Biotechnol 31(12):1133–1136. doi:10.1038/nbt.2701

    CAS  PubMed  Google Scholar 

  • Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, Gregory PD, Pabo CO, Rebar EJ (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25(7):778–785. doi:10.1038/nbt1319

    CAS  PubMed  Google Scholar 

  • Mojica FJ, Diez-Villasenor C, Soria E, Juez G (2000) Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol 36(1):244–246

    CAS  PubMed  Google Scholar 

  • Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60(2):174–182. doi:10.1007/s00239-004-0046-3

    CAS  PubMed  Google Scholar 

  • Mondrinos MJ, Koutzaki S, Jiwanmall E, Li M, Dechadarevian JP, Lelkes PI, Finck CM (2006) Engineering three-dimensional pulmonary tissue constructs. Tissue Eng 12(4):717–728. doi:10.1089/ten.2006.12.717

    CAS  PubMed  Google Scholar 

  • Moodley Y, Thompson P, Warburton D (2013) Stem cells: a recapitulation of development. Respirology 18(8):1167–1176. doi:10.1111/resp.12186

    PubMed  Google Scholar 

  • Moretti A, Bellin M, Welling A, Jung CB, Lam JT, Bott-Flugel L, Dorn T, Goedel A, Hohnke C, Hofmann F, Seyfarth M, Sinnecker D, Schomig A, Laugwitz KL (2010) Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 363(15):1397–1409. doi:10.1056/NEJMoa0908679

    CAS  PubMed  Google Scholar 

  • Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326(5959):1501. doi:10.1126/science.1178817

    CAS  PubMed  Google Scholar 

  • Mou H, Zhao R, Sherwood R, Ahfeldt T, Lapey A, Wain J, Sicilian L, Izvolsky K, Musunuru K, Cowan C, Rajagopal J (2012) Generation of multipotent lung and airway progenitors from mouse ESCs and patient-specific cystic fibrosis iPSCs. Cell Stem Cell 10(4):385–397. doi:10.1016/j.stem.2012.01.018

    PubMed Central  CAS  PubMed  Google Scholar 

  • Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132(4):661–680. doi:10.1016/j.cell.2008.02.008

    CAS  PubMed  Google Scholar 

  • Nguyen HN, Byers B, Cord B, Shcheglovitov A, Byrne J, Gujar P, Kee K, Schule B, Dolmetsch RE, Langston W, Palmer TD, Pera RR (2011) LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8(3):267–280. doi:10.1016/j.stem.2011.01.013

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nichols JE, Cortiella J (2008) Engineering of a complex organ: progress toward development of a tissue-engineered lung. Proc Am Thorac Soc 5(6):723–730. doi:10.1513/pats.200802-022AW

    PubMed  Google Scholar 

  • Nightingale SJ, Hollis RP, Pepper KA, Petersen D, Yu XJ, Yang C, Bahner I, Kohn DB (2006) Transient gene expression by nonintegrating lentiviral vectors. Mol Ther 13(6):1121–1132. doi:10.1016/j.ymthe.2006.01.008

    CAS  PubMed  Google Scholar 

  • Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W, Xiang AP, Zhou J, Guo X, Bi Y, Si C, Hu B, Dong G, Wang H, Zhou Z, Li T, Tan T, Pu X, Wang F, Ji S, Zhou Q, Huang X, Ji W, Sha J (2014) Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156(4):836–843. doi:10.1016/j.cell.2014.01.027

    CAS  PubMed  Google Scholar 

  • Noone PG, Leigh MW, Sannuti A, Minnix SL, Carson JL, Hazucha M, Zariwala MA, Knowles MR (2004) Primary ciliary dyskinesia: diagnostic and phenotypic features. Am J Respir Crit Care Med 169(4):459–467. doi:10.1164/rccm.200303-365OC

    PubMed  Google Scholar 

  • Nostro MC, Keller G (2012) Generation of beta cells from human pluripotent stem cells: Potential for regenerative medicine. Semin Cell Dev Biol 23(6):701–710. doi:10.1016/j.semcdb.2012.06.010

    PubMed Central  CAS  PubMed  Google Scholar 

  • Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317. doi:10.1038/nature05934

    CAS  PubMed  Google Scholar 

  • Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322(5903):949–953. doi:10.1126/science.1164270

    CAS  PubMed  Google Scholar 

  • Park IH, Lerou PH, Zhao R, Huo H, Daley GQ (2008a) Generation of human-induced pluripotent stem cells. Nat Protoc 3(7):1180–1186. doi:10.1038/nprot.2008.92

    CAS  PubMed  Google Scholar 

  • Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ (2008b) Disease-specific induced pluripotent stem cells. Cell 134(5):877–886. doi:10.1016/j.cell.2008.07.041

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pessach IM, Ordovas-Montanes J, Zhang SY, Casanova JL, Giliani S, Gennery AR, Al-Herz W, Manos PD, Schlaeger TM, Park IH, Rucci F, Agarwal S, Mostoslavsky G, Daley GQ, Notarangelo LD (2011) Induced pluripotent stem cells: a novel frontier in the study of human primary immunodeficiencies. J Allergy Clin Immunol 127(6):1400–1407. doi:10.1016/j.jaci.2010.11.008, e1404

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pickering SJ, Minger SL, Patel M, Taylor H, Black C, Burns CJ, Ekonomou A, Braude PR (2005) Generation of a human embryonic stem cell line encoding the cystic fibrosis mutation deltaF508, using preimplantation genetic diagnosis. Reprod Biomed Online 10(3):390–397

    PubMed  Google Scholar 

  • Plessis A, Perrin A, Haber JE, Dujon B (1992) Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics 130(3):451–460

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151(Pt 3):653–663. doi:10.1099/mic.0.27437-0

    CAS  PubMed  Google Scholar 

  • Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183. doi:10.1016/j.cell.2013.02.022

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6):1380–1389. doi:10.1016/j.cell.2013.08.021

    CAS  PubMed  Google Scholar 

  • Rashid ST, Corbineau S, Hannan N, Marciniak SJ, Miranda E, Alexander G, Huang-Doran I, Griffin J, Ahrlund-Richter L, Skepper J, Semple R, Weber A, Lomas DA, Vallier L (2010) Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J Clin Invest 120(9):3127–3136. doi:10.1172/JCI43122

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ratjen F, Doring G (2003) Cystic fibrosis. Lancet 361(9358):681–689. doi:10.1016/S0140-6736(03)12567-6

    CAS  PubMed  Google Scholar 

  • Raya A, Rodriguez-Piza I, Guenechea G, Vassena R, Navarro S, Barrero MJ, Consiglio A, Castella M, Rio P, Sleep E, Gonzalez F, Tiscornia G, Garreta E, Aasen T, Veiga A, Verma IM, Surralles J, Bueren J, Izpisua Belmonte JC (2009) Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460(7251):53–59. doi:10.1038/nature08129

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rock JR, Gao X, Xue Y, Randell SH, Kong YY, Hogan BL (2011) Notch-dependent differentiation of adult airway basal stem cells. Cell Stem Cell 8(6):639–648. doi:10.1016/j.stem.2011.04.003

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rodriguez-Piza I, Richaud-Patin Y, Vassena R, Gonzalez F, Barrero MJ, Veiga A, Raya A, Izpisua Belmonte JC (2010) Reprogramming of human fibroblasts to induced pluripotent stem cells under xeno-free conditions. Stem Cells 28(1):36–44. doi:10.1002/stem.248

    CAS  PubMed  Google Scholar 

  • Rouet P, Smih F, Jasin M (1994) Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 14(12):8096–8106

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rudin N, Sugarman E, Haber JE (1989) Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics 122(3):519–534

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32(4):347–355. doi:10.1038/nbt.2842

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T, Sasaki N, Boymans S, Cuppen E, van der Ent CK, Nieuwenhuis EE, Beekman JM, Clevers H (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13(6):653–658. doi:10.1016/j.stem.2013.11.002

    CAS  PubMed  Google Scholar 

  • Scott E, Loya K, Mountford J, Milligan G, Baker AH (2013) MicroRNA regulation of endothelial homeostasis and commitment-implications for vascular regeneration strategies using stem cell therapies. Free Radic Biol Med 64:52–60. doi:10.1016/j.freeradbiomed.2013.04.037

    CAS  PubMed  Google Scholar 

  • Seki T, Yuasa S, Oda M, Egashira T, Yae K, Kusumoto D, Nakata H, Tohyama S, Hashimoto H, Kodaira M, Okada Y, Seimiya H, Fusaki N, Hasegawa M, Fukuda K (2010) Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell 7(1):11–14. doi:10.1016/j.stem.2010.06.003

    CAS  PubMed  Google Scholar 

  • Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, Heckl D, Ebert BL, Root DE, Doench JG, Zhang F (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343(6166):84–87. doi:10.1126/science.1247005

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smith AD, Sumazin P, Xuan Z, Zhang MQ (2006) DNA motifs in human and mouse proximal promoters predict tissue-specific expression. Proc Natl Acad Sci U S A 103(16):6275–6280. doi:10.1073/pnas.0508169103

    PubMed Central  CAS  PubMed  Google Scholar 

  • Soldner F, Jaenisch R (2012) Medicine. iPSC disease modeling. Science 338(6111):1155–1156. doi:10.1126/science.1227682

    PubMed  Google Scholar 

  • Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136(5):964–977. doi:10.1016/j.cell.2009.02.013

    PubMed Central  CAS  PubMed  Google Scholar 

  • Somers A, Jean JC, Sommer CA, Omari A, Ford CC, Mills JA, Ying L, Sommer AG, Jean JM, Smith BW, Lafyatis R, Demierre MF, Weiss DJ, French DL, Gadue P, Murphy GJ, Mostoslavsky G, Kotton DN (2010) Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells 28(10):1728–1740. doi:10.1002/stem.495

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sommer CA, Mostoslavsky G (2013) The evolving field of induced pluripotency: recent progress and future challenges. J Cell Physiol 228(2):267–275. doi:10.1002/jcp.24155

    CAS  PubMed  Google Scholar 

  • Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008) Induced pluripotent stem cells generated without viral integration. Science 322(5903):945–949. doi:10.1126/science.1162494

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stubbs JL, Davidson L, Keller R, Kintner C (2006) Radial intercalation of ciliated cells during Xenopus skin development. Development 133(13):2507–2515. doi:10.1242/dev.02417

    CAS  PubMed  Google Scholar 

  • Stubbs JL, Vladar EK, Axelrod JD, Kintner C (2012) Multicilin promotes centriole assembly and ciliogenesis during multiciliate cell differentiation. Nat Cell Biol 14(2):140–147. doi:10.1038/ncb2406

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sun N, Yazawa M, Liu J, Han L, Sanchez-Freire V, Abilez OJ, Navarrete EG, Hu S, Wang L, Lee A, Pavlovic A, Lin S, Chen R, Hajjar RJ, Snyder MP, Dolmetsch RE, Butte MJ, Ashley EA, Longaker MT, Robbins RC, Wu JC (2012) Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Sci Transl Med 4(130):130ra47. doi:10.1126/scitranslmed.3003552

    PubMed Central  PubMed  Google Scholar 

  • Suzuki T, Mayhew C, Sallese A, Chalk C, Carey BC, Malik P, Wood RE, Trapnell BC (2014) Use of induced pluripotent stem cells to recapitulate pulmonary alveolar proteinosis pathogenesis. Am J Respir Crit Care Med 189(2):183–193. doi:10.1164/rccm.201306-1039OC

    PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi:10.1016/j.cell.2006.07.024

    CAS  PubMed  Google Scholar 

  • Takahashi K, Ichisaka T, Yamanaka S (2006) Identification of genes involved in tumor-like properties of embryonic stem cells. Methods Mol Biol 329:449–458. doi:10.1385/1-59745-037-5:449

    PubMed  Google Scholar 

  • Takahashi K, Okita K, Nakagawa M, Yamanaka S (2007) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2(12):3081–3089. doi:10.1038/nprot.2007.418

    CAS  PubMed  Google Scholar 

  • Tam PP, Loebel DA (2007) Gene function in mouse embryogenesis: get set for gastrulation. Nat Rev Genet 8(5):368–381. doi:10.1038/nrg2084

    CAS  PubMed  Google Scholar 

  • Tchieu J, Kuoy E, Chin MH, Trinh H, Patterson M, Sherman SP, Aimiuwu O, Lindgren A, Hakimian S, Zack JA, Clark AT, Pyle AD, Lowry WE, Plath K (2010) Female human iPSCs retain an inactive X chromosome. Cell Stem Cell 7(3):329–342. doi:10.1016/j.stem.2010.06.024

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    CAS  PubMed  Google Scholar 

  • Tobert JA (2003) Lovastatin and beyond: the history of the HMG-CoA reductase inhibitors. Nat Rev Drug Discov 2(7):517–526. doi:10.1038/nrd1112

    CAS  PubMed  Google Scholar 

  • Tolar J, Park IH, Xia L, Lees CJ, Peacock B, Webber B, McElmurry RT, Eide CR, Orchard PJ, Kyba M, Osborn MJ, Lund TC, Wagner JE, Daley GQ, Blazar BR (2011a) Hematopoietic differentiation of induced pluripotent stem cells from patients with mucopolysaccharidosis type I (Hurler syndrome). Blood 117(3):839–847. doi:10.1182/blood-2010-05-287607

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tolar J, Xia L, Riddle MJ, Lees CJ, Eide CR, McElmurry RT, Titeux M, Osborn MJ, Lund TC, Hovnanian A, Wagner JE, Blazar BR (2011b) Induced pluripotent stem cells from individuals with recessive dystrophic epidermolysis bullosa. J Invest Dermatol 131(4):848–856. doi:10.1038/jid.2010.346

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tsao PN, Wei SC, Wu MF, Huang MT, Lin HY, Lee MC, Lin KM, Wang IJ, Kaartinen V, Yang LT, Cardoso WV (2011) Notch signaling prevents mucous metaplasia in mouse conducting airways during postnatal development. Development 138(16):3533–3543. doi:10.1242/dev.063727

    PubMed Central  CAS  PubMed  Google Scholar 

  • Urbach A, Bar-Nur O, Daley GQ, Benvenisty N (2010) Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell 6(5):407–411. doi:10.1016/j.stem.2010.04.005

    PubMed Central  CAS  PubMed  Google Scholar 

  • Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435(7042):646–651. doi:10.1038/nature03556

    CAS  PubMed  Google Scholar 

  • Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4):910–918. doi:10.1016/j.cell.2013.04.025

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang T, Wei JJ, Sabatini DM, Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343(6166):80–84. doi:10.1126/science.1246981

    PubMed Central  CAS  PubMed  Google Scholar 

  • Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM, Rossi DJ (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7(5):618–630. doi:10.1016/j.stem.2010.08.012

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448(7151):318–324. doi:10.1038/nature05944

    CAS  PubMed  Google Scholar 

  • West JD, Austin ED, Gaskill C, Marriott S, Baskir R, Bilousova G, Jean JC, Hemnes AR, Menon S, Bloodworth NC, Fessel JP, Kropski JA, Irwin D, Ware LB, Wheeler L, Hong CC, Meyrick B, Loyd JE, Bowman AB, Ess KC, Klemm DJ, Young PP, Merryman WD, Kotton D, Majka SM (2014) Identification of a common Wnt-associated genetic signature across multiple cell types in pulmonary arterial hypertension. Am J Physiol Cell Physiol 307(5):C415–C430. doi:10.1152/ajpcell.00057.2014

    CAS  PubMed  Google Scholar 

  • Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385(6619):810–813. doi:10.1038/385810a0

    CAS  PubMed  Google Scholar 

  • Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hamalainen R, Cowling R, Wang W, Liu P, Gertsenstein M, Kaji K, Sung HK, Nagy A (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458(7239):766–770. doi:10.1038/nature07863

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wong AP, Bear CE, Chin S, Pasceri P, Thompson TO, Huan LJ, Ratjen F, Ellis J, Rossant J (2012) Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein. Nat Biotechnol 30(9):876–882. doi:10.1038/nbt.2328

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wood AJ, Lo TW, Zeitler B, Pickle CS, Ralston EJ, Lee AH, Amora R, Miller JC, Leung E, Meng X, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Meyer BJ (2011) Targeted genome editing across species using ZFNs and TALENs. Science 333(6040):307. doi:10.1126/science.1207773

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu Y, Liang D, Wang Y, Bai M, Tang W, Bao S, Yan Z, Li D, Li J (2013) Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 13(6):659–662. doi:10.1016/j.stem.2013.10.016

    CAS  PubMed  Google Scholar 

  • Xiao A, Wang Z, Hu Y, Wu Y, Luo Z, Yang Z, Zu Y, Li W, Huang P, Tong X, Zhu Z, Lin S, Zhang B (2013) Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res 41(14):e141. doi:10.1093/nar/gkt464

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Yoshizaki T, Yamanaka S, Okano H, Suzuki N (2011) Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum Mol Genet 20(23):4530–4539. doi:10.1093/hmg/ddr394

    CAS  PubMed  Google Scholar 

  • Yasunaga M, Tada S, Torikai-Nishikawa S, Nakano Y, Okada M, Jakt LM, Nishikawa S, Chiba T, Era T (2005) Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat Biotechnol 23(12):1542–1550. doi:10.1038/nbt1167

    CAS  PubMed  Google Scholar 

  • Yazawa M, Hsueh B, Jia X, Pasca AM, Bernstein JA, Hallmayer J, Dolmetsch RE (2011) Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 471(7337):230–234. doi:10.1038/nature09855

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ye L, Chang JC, Lin C, Sun X, Yu J, Kan YW (2009a) Induced pluripotent stem cells offer new approach to therapy in thalassemia and sickle cell anemia and option in prenatal diagnosis in genetic diseases. Proc Natl Acad Sci U S A 106(24):9826–9830. doi:10.1073/pnas.0904689106

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ye Z, Zhan H, Mali P, Dowey S, Williams DM, Jang YY, Dang CV, Spivak JL, Moliterno AR, Cheng L (2009b) Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood 114(27):5473–5480. doi:10.1182/blood-2009-04-217406

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920. doi:10.1126/science.1151526

    CAS  PubMed  Google Scholar 

  • Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324(5928):797–801. doi:10.1126/science.1172482

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y, Siuzdak G, Scholer HR, Duan L, Ding S (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4(5):381–384. doi:10.1016/j.stem.2009.04.005

    CAS  PubMed  Google Scholar 

  • Zhou J, Wang J, Shen B, Chen L, Su Y, Yang J, Zhang W, Tian X, Huang X (2014) Dual sgRNAs facilitate CRISPR/Cas9-mediated mouse genome targeting. FEBS J 281(7):1717–1725. doi:10.1111/febs.12735

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy L. Firth Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Menon, T., Firth, A.L. (2015). The Hope for iPSC in Lung Stem Cell Therapy and Disease Modeling. In: Firth, A., Yuan, JJ. (eds) Lung Stem Cells in the Epithelium and Vasculature. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-16232-4_7

Download citation

Publish with us

Policies and ethics