Skip to main content

Abstract

The cardiac troponins (cTns) are structural proteins of the cardiac myocyte contractile apparatus. When measured in circulating blood, the cardiac troponins are sensitive and specific indicators of cardiac myocyte necrosis. The elevation of cardiac troponins without necrosis remains controversial. Understanding of the troponins now includes recognition of the role of posttranslational modifications of troponin T and troponin I in the modulation of cardiac muscle contraction and overall physiology. The assays currently available for detection of troponins in the circulation are immunologically based, using antibodies to a number of epitopes of troponin I and T. Posttranslational modifications, proteolysis, and single nucleotide polymorphisms may affect the ability of the assay antibodies to recognize epitopes on the circulating troponins. The focus of this chapter is an overview of the biology of the cTns, their role in cardiac muscle contraction, and the detection of cardiac troponins with commercially available assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alpert JS, Thygesen K, Antman E, et al. Myocardial infarction redefined: a consensus document of the Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol. 2000;36:959–69.

    Article  CAS  PubMed  Google Scholar 

  2. Thygesen K, Alpert JS, White HD, Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction. Universal definition of myocardial infarction. J Am Coll Cardiol. 2007;50:2173–95.

    Article  PubMed  Google Scholar 

  3. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, Joint ESC/ACCF/AHA/WHF Task Force for the Universal Definition of Myocardial Infarction. Third universal definition of myocardial infarction. J Am Coll Cardiol. 2012;60:1581–98.

    Article  PubMed  Google Scholar 

  4. Newby LK, Jesse RL, Babbb JD, Christenson RH, De Fer TM, Diamond GA, Fesmire FM, Geraci SA, Gersh BJ, Larsen GC, Kaul S, McKay CR, Philippides GJ, Weintraub WS. ACCF 2012 expert consensus document on practical clinical considerations in the interpretation of troponin elevations. J Am Coll Cardiol. 2012;60(23):2427–63.

    Article  PubMed  Google Scholar 

  5. Solaro RJ. Sarcomere control mechanisms and the dynamics of the cardiac cycle. J Biomed Biotech. 2010;2010:105648. Published online 2010 May 10. doi: 10.1155/2010/105648. PMCID:PMC2866969.

    Article  Google Scholar 

  6. Balse E, Steele DF, Abriel H, Coulombe A, Fedida D, Hatem SN. Dynamic of ion channel expression at the plasma membrane of cardiomyocytes. Physiol Rev. 2011;92:1317–58.

    Article  Google Scholar 

  7. Brashers VL, McCance KL. Structure and function of the cardiovascular and lymphatic systems. In: McCance KL, Huether SE, Brashers V, Rote NS eds. Pathophysiology: the biological basis for disease in adults and children. 6th ed. Maryland Heights: Mosby, Elsevier; 2010.

    Google Scholar 

  8. Marian A, Roberts R. Recent advances in the molecular genetics of hypertrophic cardiomyopathy. Circulation. 1995;92:1336–47.

    Article  CAS  PubMed  Google Scholar 

  9. Parmacek MS, Solaro RJ. Biology of the troponin complex in cardiac myocytes. Prog Cardiovasc Dis. 2004;47(3):159–76.

    Article  CAS  PubMed  Google Scholar 

  10. Frank D, Frey N. Cardiac Z-disc signaling network. J Biol Chem. 2011;286(12):9897–904.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Auerbach D, Bantle S, Keller S, Hinderling V, Leu M, Ehler E, Perriard J-C. Different domains of the M-band protein myomesin are involved in myosin binding and M-band targeting. Mol Biol Cell. 1999;10:1297–308.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Krüger M, Linke WA. The giant protein titan: a regulatory node that integrates myocyte signaling pathways. J Biol Chem. 2011;286(12):9905–12.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Herzberg O, James MN. Structure of the calcium regulatory muscle protein troponin-C at 2.8A resolution. Nature. 1985;313(6004):653–9.

    Article  CAS  PubMed  Google Scholar 

  14. Sundaralingam M, Bergstrom R, Strasburg G, Rao ST, Roychowdhury P, et al. Molecular structure of troponin C from chicken skeletal muscle at 3-angstrom resolution. Science. 1985;227:945–8.

    Article  CAS  PubMed  Google Scholar 

  15. Houdusse A, Love ML, Dominguez R, Grabarek Z, Cohen C. Structures of four Ca2+ -bound troponin C at 2.0 Å resolution: further insights into the Ca2+ switch in the calmodulin superfamily. Structure. 1997;5:1695–711.

    Article  CAS  PubMed  Google Scholar 

  16. Jin J-P, Huang Q-Q, Ogut O, Chen A, Wang J. Troponin T isoform regulation and structure-function relationships. Basic Appl Myol. 2000;10(1&2):17–26.

    Google Scholar 

  17. Li MX, Wang X, Sykes BD. Structural based insights into the role of troponin in cardiac muscle pathophysiology. J Muscle Res Cell Motil. 2004;25:559–79.

    Article  CAS  PubMed  Google Scholar 

  18. Katrukha IA. Human cardiac troponin complex. Structure and functions. Biochemistry (Moscow). 2013;78(13):1447–65.

    Article  CAS  Google Scholar 

  19. Lippi G, Targher G, Franchi M, Plebani M. Genetic and biochemical heterogeneity of cardiac troponins: clinical and laboratory implications. Clin Chem Lab Med. 2009;47(10):1183–94.

    Article  CAS  PubMed  Google Scholar 

  20. Saggin L, Gorza L, Ausoni S, Schiaffino S. Troponin I switching in the developing heart. J Biol Chem. 1989;264:16299–302.

    CAS  PubMed  Google Scholar 

  21. Sasse S, Brand NJ, Kyprianou P, Dhoot GK, Wade R, Arai M, Periasamy M, Yacoub MH, Barton PJ. Troponin I gene expression during human cardiac development and in end-stage heart failure. Circ Res. 1993;72:932–8.

    Article  CAS  PubMed  Google Scholar 

  22. Kobayashi T, Solaro RJ. Calcium, thin filaments, and the integrative biology of cardiac contractility. Annu Rev Physiol. 2005;67:39–67.

    Article  CAS  PubMed  Google Scholar 

  23. Davis JP, Tikunova SB. Ca2+ exchange with troponin C and cardiac muscle dynamics. Cardiovasc Res. 2008;77:619–26.

    Article  CAS  PubMed  Google Scholar 

  24. Akhter S, Zhang Z, Jin J-P. The heart specific NH2-terminal extension regulates the molecular conformation and function of cardiac troponin I. Am J Physiol Heart Circ Physiol. 2012;302:H923–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Lu QW, Hinken AC, Patrick SE, et al. Phosphorylation of cardiac troponin I at protein kinase C site threonine 144 depresses cooperative activation of thin filaments. J Biol Chem. 2010;285:11810–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Feng HZ, Chen M, Weinstein LS, Jin JP. Removal of the N-terminal extension of cardiac troponin I as a functional compensation for impaired myocardial beta-adrenergic signaling. J Biol Chem. 2008;283:33384–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Yu ZB, Zhang LF, Jin JP. A proteolytic NH2-terminal truncation of cardiac troponin I that is up-regulated in simulated microgravity. J Biol Chem. 2001;276:15753–60.

    Article  CAS  PubMed  Google Scholar 

  28. McConnell BK, Popovic Z, Mal N, Lee K, Bautista J, Forudi F, Schwartzman R, Jin JP, Penn M, Bond M. Disruption of protein kinase A interaction with A-kinase anchoring proteins in the heart in vivo: effects on cardiac contractility, protein kinase A phosphorylation, and troponin I proteolysis. J Biol Chem. 2009;284:1583–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Jin JP. Alternative RNA, splicing-generated cardiac troponin T isoform switching: a non-heart-restricted genetic programming synchronized in developing cardiac and skeletal muscles. Biochem Biophys Res Commun. 1996;225:883–9.

    Article  CAS  PubMed  Google Scholar 

  30. Anderson PA, Greig A, Mark TM, Malouf NN, Oakeley AE, Ungerleider RM, et al. Molecular basis of human cardiac troponin T isoforms expressed in the developing, adult, and failing heart. Circ Res. 1995;76:681–6.

    Article  CAS  PubMed  Google Scholar 

  31. Streng AS, de Boer D, van der Velden J, van Diejen-Visser MP, Wodzig WKWH. Post-translational modifications of cardiac troponin T: an overview. J Mol Cell Cardiol. 2013;63:47–56.

    Article  CAS  PubMed  Google Scholar 

  32. Willott RH, Gomes AV, Chang AN, Parvatiyar MS, Pinto JR, Potter JD. Mutations in troponin that cause HCM, DCM and RCM: what can we learn about thin filament function? J Mol Cell Cardiol. 2010;48:882–92.

    Article  CAS  PubMed  Google Scholar 

  33. Stehle R, Iorga B. Kinetics of cardiac sarcomeric processes and rate-limiting steps in contraction and relaxation. J Mol Cell Cardiol. 2010;48:843–50.

    Article  CAS  PubMed  Google Scholar 

  34. Solaro RJ, Henze M, Kobayashi T. Integration of troponin I phosphorylation with cardiac regulatory networks. Circ Res. 2013;18(112):355–66.

    Google Scholar 

  35. Bers DM, Despa S. Cardiac myocytes Ca2+ and Na+ regulation in normal and failing hearts. J Pharmacol Sci. 2006;100:315–22.

    Article  CAS  PubMed  Google Scholar 

  36. Liu B, Tikunova SB, Kline KP, Siddiqui JK, Davis JP. Disease-related cardiac troponins alter thin filament Ca2+ association and dissociation rates. PLoS One. 2012;7(6e38259):1–11.

    Google Scholar 

  37. Bates KJ, Hall EM, Fahie-Wilson MN, et al. Circulating immunoreactive cardiac troponin forms determined by gel filtration chromatography after acute myocardial infarction. Clin Chem. 2010;56(6):952–8.

    Article  CAS  PubMed  Google Scholar 

  38. Katus HA, Remppis A, Scheffold T, Diederich KW, Kuebler W. Intracellular compartmentation of cardiac troponin T and its release kinetics in patients with reperfused and nonreperfused myocardial infarction. Am J Cardiol. 1991;67(16):1360–7.

    Article  CAS  PubMed  Google Scholar 

  39. Orogo AM, Gustafsson AB. Cell death in the myocardium: my heart won’t go on. Int Union Biochem Mol Biol. 2013;65(8):651–6.

    Article  CAS  Google Scholar 

  40. White HD. Pathobiology of troponin elevations. Do elevations occur with myocardial ischemia as well as necrosis? J Am Coll Cardiol. 2011;57(24):2406–8.

    Article  CAS  PubMed  Google Scholar 

  41. Martin AF. Turnover of cardiac troponin subunits: kinetic evidence for a precursor pool of troponin-I. J Biol Chem. 1981;256(2):964–8.

    CAS  PubMed  Google Scholar 

  42. Guy MJ, Chen Y-C, Clinton L, Zhang H, Zhang J, Dong X, Xu Q, Ayaz-Guner S, Ge Y. The impact of antibody selection on the detection of cardiac troponin I. Clin Chim Acta. 2013;420:82–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Diris JH, Hackeng CM, Kooman JP, Pinto YM, Hermens WT, van Dieijen-Visser MP. Impaired renal clearance explains elevated troponin T fragments in hemodialysis patients. Circulation. 2004;109:23–5.

    Article  CAS  PubMed  Google Scholar 

  44. International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) website. http://www.ifcc.org/media/245272/IFCC%20Troponin%20I%20and%20T%20(ug_L%20units)%20_update%20December%202013.pdf

  45. Apple FS, Collinson PO. Analytical characteristics of high-sensitivity cardiac troponin assays. Clin Chem. 2012;58(1):54–61.

    Article  CAS  PubMed  Google Scholar 

  46. Conrad MJ, Jarolim P. Cardiac troponins and high sensitivity cardiac troponin assays. Clin Lab Med. 2014;34:59–73.

    Article  PubMed  Google Scholar 

  47. Madsen LH, Christensen G, Lund T, Serebruany VL, Granger CB, Hoen I, Grieg Z, Alexander JH, Jaffee AS, Van Eyk JE, Atar D. Time course of degradation of cardiac troponin I in patients with acute ST-elevation myocardial infarction: the ASSENT-2 troponin substudy. Circ Res. 2006;99:1141–7.

    Article  CAS  PubMed  Google Scholar 

  48. Cardinaels EPM, Mingels AMA, van Rooij T, Collinson PO, Prinzen FW, van Diejen-Visser MP. Time-dependent degradation pattern of cardiac troponin T following myocardial infarction. Clin Chem. 2013;59(7):1083–90.

    Article  CAS  PubMed  Google Scholar 

  49. Lippi G, Cervellin G. Genetic polymorphisms of human cardiac troponins as an unrecognized challenge for diagnosing myocardial injury. Int J Cardiol. 2014;171(3):467–70.

    Article  PubMed  Google Scholar 

  50. Lu Q-W, Wu X-Y, Morimoto S. Inherited cardiomyopathies caused by troponin mutations. J Geriatr Cardiol. 2013;10:91–101.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Katus HA, Remppis A, Neumann FJ, Scheffold T, Diederich KW, Vinar G, Noe A, Matern G, Kuebler W. Diagnostic efficiency of troponin T measurements in acute myocardial infarction. Circulation. 1991;83:902–12.

    Article  CAS  PubMed  Google Scholar 

  52. Jaffe AS, Vasile VC, Milone M, Saenger AK, Olson KN, Apple FS. Diseased skeletal muscle: a noncardiac source of increased circulating concentrations of cardiac troponin T. J Am Coll Cardiol. 2011;18(58):1819–24.

    Article  Google Scholar 

  53. Dhir T, Jiang N. Misleading elevation of troponin T caused by polymyositis. Int J Biomed Sci. 2013;9(2):107–11.

    PubMed Central  PubMed  Google Scholar 

  54. Rittoo D, Jones A, Lecky B, Neithercut D. Elevation of cardiac troponin T but not cardiac troponin I in patients with neuromuscular diseases: implications for the diagnosis of myocardial infarction. J Am Coll Cardiol. 2014;03(027).

    Google Scholar 

  55. Christenson RH, Bunk DM, Schimmel H, Tate JR, IFCC Working Group on Standardization of Troponin I. Put simply, standardization of cardiac troponin I is complicated. Clin Chem. 2012;58(1):165–8.

    Article  CAS  PubMed  Google Scholar 

  56. Gore MO, Seliger SL, deFilippi CR, Nambi V, Christenson RH, Hashim IA, Hoogeveen RC, Ayers CR, Sun W, McGuire DK, Ballantyne CM, deLemos JA. Age and sex-dependent upper reference limits for the high sensitivity cardiac troponin T assay. J Am Coll Cardiol. 2014;63(14):1441–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Petersmann A, Ittermann T, Fries C, Lubenow N, Kohlmann T, Kallner A, Greinacher A, Nauck M. Comparison of the 99th percentiles of three troponin I assays in a large reference population. Clin Chem Lab Med. 2013;51(11):2181–6.

    Article  CAS  PubMed  Google Scholar 

  58. Cummins B, Auckland ML, Cummins P. Cardiac-specific troponin radioimmunoassay in the diagnosis of acute myocardial infarction. Am Heart J. 1987;113:1333–44.

    Google Scholar 

  59. Katus HA, Remppis A, Looser S, Hallermeier K, Scheffold T, Kubler W. Enzyme linked immuno assay of cardiac troponin T for the detection of acute myocardial infarction in patients. J Mol Cell Cardiol. 1989;21:1349–53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Hausner DVM, DABT, DABVT .

Editor information

Editors and Affiliations

Additional information

Disclaimer

The views and opinions expressed are those of the author and do not reflect the positions of the Food and Drug Administration.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hausner, E.A. (2015). Cardiac Muscle and the Troponins. In: Jagadeesh, G., Balakumar, P., Maung-U, K. (eds) Pathophysiology and Pharmacotherapy of Cardiovascular Disease. Adis, Cham. https://doi.org/10.1007/978-3-319-15961-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15961-4_10

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-15960-7

  • Online ISBN: 978-3-319-15961-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics