Skip to main content

Seismic Detections of Small-Scale Heterogeneities in the Deep Earth

  • Chapter
  • First Online:
The Earth's Heterogeneous Mantle

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

Abstract

We report the detection of coherent scattered energy related to the phase PKPPKP (PP′) in the data of medium aperture arrays. The scattered energy (P•P′) is weak and requires array processing techniques to extract the signal from the noise. The arrival time window of P•P′ is mostly free from other interfering body wave energy and can be detected over a large distance range. P•P′ has been detected in the data of large aperture arrays previously, but the detection in the data of smaller arrays shows its potential for the study of the small-scale structure of the Earth. Here, we show that P•P′ can detect scattering off small-scale heterogeneities throughout the Earth’s mantle from crust to core making this one of the most versatile scattering probes available. We compare the results of P•P′ to a related scattering probe (PK•KP). The detected energy is in agreement with stronger scattering, i.e., more heterogeneous structure, in the upper mantle and in an approximately 800-km-thick layer above the core–mantle boundary. Lateral variations in heterogeneity structure can also be detected through differences in scattered energy amplitude. We use an application of the F-statistic in the array processing allowing us a precise measurement of the incidence angles (slowness and backazimuth ) of the scattered energy. The directivity information of the array data allows an accurate location of the scattering origin. The combination of high-resolution array processing and the scattering of P•P′ as probe for small-scale heterogeneities throughout the Earth’s mantle will provide constraints on mantle convection , mantle structure , and mixing related to the subduction process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aki K (1969) Analysis of seismic coda of local earthquakes as scattered waves. J Geophys Res 74(2):615–631

    Article  Google Scholar 

  • Albarede F (2005) The survival of mantle geochemical heterogeneities. Earth’s Deep Mantle Struct Compos Evol 160:27–46. doi:10.1029/160GM04

    Article  Google Scholar 

  • Allègre CJ, Turcotte DL (1986) Implications of a two-component marble-cake mantle. Nature 323(6084):123–127. doi:10.1038/323123a0

    Article  Google Scholar 

  • Astiz L, Earle P, Shearer P (1996) Global stacking of broadband seismograms. Seism Res Lett 67(4):8–18. doi:10.1785/gssrl.67.4.8

    Article  Google Scholar 

  • Bataille K, Flatte S (1988) Inhomogeneities near the core-mantle boundary inferred from short-period scattered PKP waves recorded at the global digital seismograph network. J Geophys Res 93(B12):15057–15064. doi:10.1029/JB093iB12p15057

    Article  Google Scholar 

  • Bataille K, Wu R, Flatte S (1990) Inhomogeneities near the core-mantle boundary evidenced from scattered waves—a review. Pure Appl Geoph 132(1–2):151–173

    Article  Google Scholar 

  • Bentham HLM, Rost S (2014) Scattering beneath Western Pacific subduction zones: evidence for oceanic crust in the mid-mantle. Geophys J Int 197:1627–1641

    Google Scholar 

  • Braña L, Helffrich G (2004) A scattering region near the core-mantle boundary under the North Atlantic. Geophys J Int 158(2):625–636

    Article  Google Scholar 

  • Bullen K (1949) An Earth model based on a compressibility-pressure hypothesis. Month Not R Astr Soc 109(6):720–720

    Google Scholar 

  • Cao A, Romanowicz B (2007) Locating scatterers in the mantle using array analysis of PKP precursors from an earthquake doublet. Earth Planet Sci Lett 255(1–2):22–31

    Article  Google Scholar 

  • Castle JC, Creager KC (1999) A steeply dipping discontinuity in the lower mantle beneath Izu-Bonin. J Geophys Res 104(B4):7279–7292. doi:10.1029/1999JB900011

    Article  Google Scholar 

  • Chang A, Cleary J (1981) Scattered PKKP—further evidence for scattering at a rough core-mantle boundary. Phys Earth Planet Inter 24(1):15–29

    Article  Google Scholar 

  • Christensen U, Hofmann A (1994) Segregation of subducted oceanic-crust in the convecting mantle. J Geophys Res 99(B10):19867–19884

    Article  Google Scholar 

  • Cleary J (1981) Seismic-wave scattering on underside reflection at the core-mantle boundary. Phys Earth Planet Inter 26(4):266–267

    Article  Google Scholar 

  • Cleary J, Haddon R (1972) Seismic wave scattering near core-mantle boundary—new interpretation of precursors to PKP. Nature 240(5383):549–551

    Article  Google Scholar 

  • Cormier V (2000) D″ as a transition in the heterogeneity spectrum of the lowermost mantle. J Geophys Res 105(B7):16193–16205

    Article  Google Scholar 

  • Cormier V (2007) Texture of the uppermost inner core from forward- and back-scattered seismic waves. Earth Planet Sci Lett 258(3–4):442–453

    Article  Google Scholar 

  • Deschamps F, Cobden L, Tackley PJ (2012) The primitive nature of large low shear-wave velocity provinces. Earth Planet Sci Lett 349–350:198–208. doi:10.1016/j.epsl.2012.07.012

    Article  Google Scholar 

  • Doornbos D (1974) Seismic-wave scattering near caustics—observations of PKKP precursors. Nature 247(5440):352–353

    Article  Google Scholar 

  • Doornbos D (1978) Seismic-wave scattering by a rough core-mantle boundary. Geophys J R Astr Soc 53(3):643–662

    Article  Google Scholar 

  • Doornbos DJ, Husebye ES (1972) Array analysis of PKP phases and their precursors. Phys Earth Planet Inter 5:387–399. doi:10.1016/0031-9201(72)90110-0

    Article  Google Scholar 

  • Doornbos D, Vlaar N (1973) Regions of seismic-wave scattering in Earth’s mantle and precursors to PKP. Nat Phys Sci 243(126):58–61

    Article  Google Scholar 

  • Dziewonski A, Anderson D (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25(4):297–356

    Article  Google Scholar 

  • Earle P (2002) Origins of high-frequency scattered waves near PKKP from large aperture seismic array data. Bull Seism Soc Am 92(2):751–760

    Article  Google Scholar 

  • Earle PS, Rost S, Shearer PM, Thomas C (2011) Scattered P′P′ waves observed at short distances. Bull Seismol Soc Am 101(6):2843–2854. doi:10.1785/0120110157

  • Earle P, Shearer P (1997) Observations of PKKP precursors used to estimate small-scale topography on the core-mantle boundary. Science 277(5326):667–670

    Article  Google Scholar 

  • Earle P, Shearer P (1998) Observations of high-frequency scattered energy associated with the core phase PKKP. Geophys Res Lett 25(3):405–408

    Article  Google Scholar 

  • Earle P, Shearer P (2001) Distribution of fine-scale mantle heterogeneity from observations of P diff coda. Bull Seism Soc Am 91(6):1875–1881

    Article  Google Scholar 

  • Frosch R, Green P (1966) Concept of a large aperture seismic array. Proc R Soc Lond 290(1422):368–388. doi:10.1098/rspa.1966.0056

    Article  Google Scholar 

  • Frost D, Rost S, Selby N, Stuart G (2013) Detection of a tall ridge at the core-mantle boundary from scattered PKP energy. Geophys J Int 195(1):558–574 (in print)

    Google Scholar 

  • Fukao Y, Obayashi M, Nakakuki T (2009) Stagnant slab: a review. Ann Rev Earth Planet Sci 37:19–46. doi:10.1146/annurev.earth.36.031207.124224

    Article  Google Scholar 

  • Garnero E (2000) Heterogeneity of the lowermost mantle. Ann Rev Earth Planet Sci 28:509–537

    Article  Google Scholar 

  • Garnero E, McNamara A (2008) Structure and dynamics of Earth’s lower mantle. Science 320(5876):626–628

    Article  Google Scholar 

  • Green P, Frosch R, Romney C (1965) Principles of an experimental large aperture seismic array (lasa). Proc IEEE 53(12):1821–1833

    Article  Google Scholar 

  • Gutenberg B, Richter C (1934) On seismic waves; I. Gerlands Beitr Geophysik 43:56–133

    Google Scholar 

  • Haddon RAW, Cleary JR (1974) Evidence for scattering of seismic PKP waves near the mantle-core boundary. Phys Earth Planet Inter 8(3):211–234. doi:10.1016/0031-9201(74)90088-0

    Article  Google Scholar 

  • Haddon R, Husebye E, King D (1977) Origins of precursors to P′P′. Phys Earth Planet Inter 14(1):41–70

    Article  Google Scholar 

  • Hedlin MAH, Shearer PM, Earle PS (1997) Seismic evidence for small-scale heterogeneity throughout the Earth’s mantle. Nature 387(6629):145–150. doi:10.1038/387145a0

  • Hedlin M, Shearer P (2000) An analysis of large-scale variations in small-scale mantle heterogeneity using global seismographic network recordings of precursors to PKP. J Geophys Res 105(B6):13655–13673

    Article  Google Scholar 

  • Hedlin M, Shearer P (2002) Probing mid-mantle heterogeneity using PKP coda waves. Phys Earth Planet Inter 130(3–4):195–208

    Article  Google Scholar 

  • Helffrich GR, Wood BJ (2001) The Earth’s mantle. Nature 412(6846):501–507. doi:10.1038/35087500

    Article  Google Scholar 

  • Van der Hilst R, Engdahl E, Spakman W, Nolet G (1991) Tomographic imaging of subducted lithosphere below northwest Pacific island arcs. Nature 353(6339):37–43

    Article  Google Scholar 

  • Jeffreys SH, Bullen KE (1940) Seismological tables. Office of the British Association of Sciences

    Google Scholar 

  • Kaneshima S (2009) Seismic scatterers at the shallowest lower mantle beneath subducted slabs. Earth Planet Sci Lett 286(1–2):304–315. doi:10.1016/j.epsl.2009.06.044

    Article  Google Scholar 

  • Kaneshima S, Helffrich G (1999) Dipping low-velocity layer in the mid-lower mantle: evidence for geochemical heterogeneity. Science 283(5409):1888–1891

    Article  Google Scholar 

  • Kaneshima S, Helffrich G (2003) Subparallel dipping heterogeneities in the mid-lower mantle. J Geophys Res 108(B5):2272

    Article  Google Scholar 

  • Kaneshima S, Helffrich G, Suetsugu D, Bina C, Inoue T, Wiens D, Jellinek M (2010) Small scale heterogeneity in the mid-lower mantle beneath the circum-Pacific area. Phys Earth Planet Inter 183(1–2):91–103. doi:10.1016/j.pepi.2010.03.011

    Article  Google Scholar 

  • Kennett B, Engdahl E (1991) Traveltimes for global earthquake location and phase identification. Geophys J Int 105(2):429–465

    Article  Google Scholar 

  • King D, Haddon R, Husebye E (1975) Precursors to PP. Phys Earth Planet Inter 10(2):103–127

    Article  Google Scholar 

  • King D, Husebye E, Haddon R (1976) Processing of seismic precursor data. Phys Earth Planet Inter 12(2–3):128–134

    Article  Google Scholar 

  • Kito T, Thomas C, Rietbrock A, Garnero E, Nippress SEJ, Heath AE (2008) Seismic evidence for a sharp lithospheric base persisting to the lowermost mantle beneath the Caribbean. Geophys J Int 174(3):1019–1028. doi:10.1111/j.1365-246X.2008.03880.x

    Article  Google Scholar 

  • Koper K, Franks J, Dombrovskaya M (2004) Evidence for small-scale heterogeneity in Earth’s inner core from a global study of PKiKP coda waves. Earth Planet Sci Lett 228(3–4):227–241

    Article  Google Scholar 

  • Korn M (1988) P-wave coda analysis of short-period array data and the scattering and absorptive properties of the lithosphere. Geophys J Lond 93(3):437–449. doi:10.1111/j.1365-246X.1988.tb03871.x

    Article  Google Scholar 

  • Leyton F, Koper K (2007) Using PKiKP coda to determine inner core structure: 1. Synthesis of coda envelopes using single-scattering theories. J Geophys Res 112(B5):B05316

    Google Scholar 

  • Li C, van der Hilst RD, Engdahl ER, Burdick S (2008) A new global model for P wave speed variations in Earth’s mantle. Geochem Geophys Geosyst 9(5):Q05018. doi:10.1029/2007GC001806

    Google Scholar 

  • Lithgow-Bertelloni C, Richards M (1998) The dynamics of Cenozoic and Mesozoic plate motions. Rev Geophys 36(1):27–78

    Article  Google Scholar 

  • Manchee E, Weichert D (1968) Epicentral uncertainties and detection probabilities from Yellowknife seismic array data. Bull Seism Soc Am 58(5):1359–1377

    Google Scholar 

  • Mancinelli NJ, Shearer P (2013) Reconciling discrepancies among estimates of small-scale mantle heterogeneity from PKP precursors. Geophys J Int 195:1721–1729

    Google Scholar 

  • Margerin L, Nolet G (2003) Multiple scattering of high-frequency seismic waves in the deep Earth: PKP precursor analysis and inversion for mantle granularity. J Geophys Res 108(B11):2514. doi:10.1029/2003JB002455

    Article  Google Scholar 

  • McNamara AK, Garnero EJ, Rost S (2010) Tracking deep mantle reservoirs with ultra-low velocity zones. Earth Planet Sci Lett 299(1–2):1–9. doi:10.1016/j.epsl.2010.07.042

    Article  Google Scholar 

  • McNamara A, Zhong S (2005) Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437(7062):1136–1139

    Article  Google Scholar 

  • Olson P, Yuen D, Balsiger D (1984) Convective mixing and the fine-structure of mantle heterogeneity. Phys Earth Planet Inter 36:291–304

    Article  Google Scholar 

  • Poupinet G, Kennett BLN (2004) On the observation of high frequency PKiKP and its coda in Australia. Phys Earth Planet Inter 146(3–4):497–511

    Article  Google Scholar 

  • Ritsema J, Deuss A, van Heijst HJ, Woodhouse JH (2011) S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys J Int 184(3):1223–1236. doi:10.1111/j.1365-246X.2010.04884.x

    Article  Google Scholar 

  • Rost S, Earle P (2010) Identifying regions of strong scattering at the core-mantle boundary from analysis of PKKP precursor energy. Earth Planet Sci Lett 297(3–4):616–626. doi:10.1016/j.epsl.2010.07.014

    Article  Google Scholar 

  • Rost S, Garnero E (2004) A study of the uppermost inner core from PKKP and P′P′ differential traveltimes. Geophys J Int 156(3):565–574

    Article  Google Scholar 

  • Rost S, Garnero E, Williams Q (2008) Seismic array detection of subducted oceanic crust in the lower mantle. J Geophys Res 113(B6):B06303. doi:10.1029/2007JB005263

    Google Scholar 

  • Rost S, Thorne M (2010) Radial and lateral variations in mantle heterogeneity from scattered seismic waves (Invited). Abstract DI52A-08, 2010 Fall Meeting, AGU, San Francisco

    Google Scholar 

  • Rost S, Thorne M, Garnero E (2006) Imaging global seismic phase arrivals by stacking array processed short-period data. Seism Res Lett 77(6):697–707

    Article  Google Scholar 

  • Sato H (1988) Temporal change in scattering and attenuation associated with the earthquake occurrence? A review of recent studies on coda waves. Pure Appl Geophys 126(2–4):465–497. doi:10.1007/BF00879007

    Article  Google Scholar 

  • Selby ND (2011) Improved teleseismic signal detection at small-aperture arrays. Bull Seismol Soc Amer 101(4):1563–1575. doi:10.1785/0120100253

    Article  Google Scholar 

  • Shearer P (1990) Seismic imaging of upper-mantle structure with new evidence for a 520-Km discontinuity. Nature 344(6262):121–126. doi:10.1038/344121a0

    Article  Google Scholar 

  • Shearer P, Earle P (2004) The global short-period wavefield modelled with a Monte-Carlo seismic phonon method. Geophys J Int 158(3):1103–1117

    Article  Google Scholar 

  • Shearer PM (2007) Deep Earth structure—seismic scattering in the deep Earth. Treatise on geophysics. Elsevier, Amsterdam, pp 695–729

    Chapter  Google Scholar 

  • Shearer PM, Earle PS (2008) Chapter 6—Observing and modeling elastic scattering in the deep Earth. In: Earth heterogeneity and scattering effects on seismic waves, vol 50. Elsevier, Amsterdam, pp 167–193

    Google Scholar 

  • Simmons NA, Myers SC, Johannesson G, Matzel E (2012) LLNL-G3Dv3: global P wave tomography model for improved regional and teleseismic travel time prediction, J Geophys Res 117(B10). doi:10.1029/2012JB009525

  • Stixrude L, Lithgow-Bertelloni C (2012) Geophysics of chemical heterogeneity in the mantle. Ann Rev Earth Planet Sci 40(1):569–595. doi:10.1146/annurev.earth.36.031207.124244

    Article  Google Scholar 

  • Tan E, Gurnis M (2005) Metastable superplumes and mantle compressibility. Geophys Res Lett 32(20):L20307

    Article  Google Scholar 

  • Thomas C, Weber M, Wicks C, Scherbaum F (1999) Small scatterers in the lower mantle observed at German broadband arrays. J Geophys Res 104(B7):15073–15088

    Article  Google Scholar 

  • Tkalčić H, Flanagan M, Cormier V (2006) Observation of near-podal P′P′ precursors: evidence for back scattering from the 150–220 km zone in the Earth’s upper mantle. Geophys Res Lett 33(3):L03305

    Google Scholar 

  • Vanacore E, Niu F, Ma Y (2010) Large angle reflection from a dipping structure recorded as a PKIKP precursor: evidence for a low velocity zone at the core-mantle boundary beneath the Gulf of Mexico. Earth Planet Sci Lett 293(1–2):54–62. doi:10.1016/j.epsl.2010.02.018

    Article  Google Scholar 

  • Vidale J, Dodge D, Earle P (2000) Slow differential rotation of the Earth’s inner core indicated by temporal changes in scattering. Nature 405(6785):445–448

    Article  Google Scholar 

  • Vidale J, Earle P (2000) Fine-scale heterogeneity in the Earth’s inner core. Nature 404(6775):273–275

    Article  Google Scholar 

  • Weber M, Wicks C (1996) Reflections from a distant subduction zone. Geophys Res Lett 23(12):1453–1456

    Article  Google Scholar 

  • Weichert D, Whitham K (1969) Calibration of yellowknife seismic array with first zone explosions. Geophys J R Astr Soc 18(5):461–476

    Article  Google Scholar 

  • Wen L (2000) Intense seismic scattering near the Earth’s core-mantle boundary beneath the Comoros hotspot. Geophys Res Lett 27(22):3627–3630

    Article  Google Scholar 

  • Widiyantoro S, Van der Hilst R (1997) Mantle structure beneath Indonesia inferred from high-resolution tomographic imaging. Geophys J Int 130(1):167–182. doi:10.1111/j.1365-246X.1997.tb00996.x

    Article  Google Scholar 

  • Woodhouse J, Dziewonski A (1984) Mapping the upper mantle—3-dimensional modeling of Earth structure by inversion of seismic waveforms. J Geophys Res 89(NB7):5953–5986

    Article  Google Scholar 

  • Wright C (1972) Array studies of seismic waves arriving between P and PP in distance range 90° to 115°. Bull Seismol Soc Amer 62(1):385–400

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Rost .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rost, S., Earle, P.S., Shearer, P.M., Frost, D.A., Selby, N.D. (2015). Seismic Detections of Small-Scale Heterogeneities in the Deep Earth. In: Khan, A., Deschamps, F. (eds) The Earth's Heterogeneous Mantle. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-319-15627-9_12

Download citation

Publish with us

Policies and ethics