Skip to main content

Lasso Granger Causal Models: Some Strategies and Their Efficiency for Gene Expression Regulatory Networks

  • Chapter
  • First Online:
Decision Making: Uncertainty, Imperfection, Deliberation and Scalability

Part of the book series: Studies in Computational Intelligence ((SCI,volume 538))

Abstract

The detection of causality in gene regulatory networks from experimental data, such as gene expression measurements, is a challenging problem. Granger causality, based on a vector autoregressive model, is one of the most popular methods for uncovering the temporal dependencies between time series, and so it can be used for estimating the causal relationships between the genes in the network. The application of multivariate Granger causality to the networks with a big number of variables (genes) requires a variable selection procedure. For fighting with lack of informative data, the so called regularization procedures are applied. Lasso method is a well known example of such a procedure and the multivariate Granger causality method with the Lasso is called Graphical Lasso Granger method. It is widely accepted that the Graphical Lasso Granger method with an inappropriate parameter setting tends to select too many causal relationships, which leads to spurious results. In our previous work, we proposed a thresholding strategy for Graphical Lasso Granger method, called two-level-thresholding and demonstrated how the variable over-selection of the Graphical Lasso Granger method can be overcome. Thus, an appropriate thresholding, i.e. an appropriate choice of the thresholding parameter, is crucial for the accuracy of the Graphical Lasso Granger method. In this paper, we compare the performance of the Graphical Lasso Granger method with an appropriate thresholding to two other Lasso Granger methods (the regular Lasso Granger method and Copula Granger method) as well as to the method combining ordinary differential equations with dynamic Bayesian Networks. The comparison of the methods is done on the gene expression data of the human cancer cell line for a regulatory network of nineteen selected genes. We test the causal detection ability of these methods with respect to the selected benchmark network and compare the performance of the mentioned methods on various statistical measures. The discussed methods apply a dynamic decision making. They are scalable and can be easily extended to networks with a higher number of genes. In our tests, the best method with respect to the precision and computational cost turns out to be the Graphical Lasso Granger method with two-level-thresholding. Although the discussed algorithms were motivated by problems coming from genetics, they can be also applied to other real-world problems dealing with interactions in a multi-agent system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Winsorising or Winsorization, called after C.P. Winsor, is the transformation of statistics by limiting extreme values in the statistical data to reduce the effect of possibly spurious outliers, see for example [20].

  2. 2.

    \(\varPhi ^{-1}\) is the inverse cumulative distribution function of a standard normal.

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables, 9th printing. Dover, New York (1972)

    Google Scholar 

  2. Äijö, T., Lahdesmäki, H.: Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics. Bioinformatics 25(22), 2937–2944 (2009)

    Article  Google Scholar 

  3. Arnold, A., Liu, Y., Abe, N.: Temporal causal modeling with graphical Granger methods. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2007)

    Google Scholar 

  4. Bahadori, T., Y. Liu, Y.: An examination of large-scale Granger causality inference. SIAM Conference on Data Mining (2013)

    Google Scholar 

  5. Bansal, M., Della Gatta, G.: Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics 22, 815822 (2006)

    Article  Google Scholar 

  6. Bansal, M., Belcastro, V., Ambesi-Impiombato, A., di Bernardo, D.: How to infer gene networks from expression profiles. Mol. Syst. Biol. 3, 78 (2007)

    Article  Google Scholar 

  7. Barenco, M., et al.: Ranked prediction of p53 targets using hidden variable dynamic modeling. Genome Biol. 7, R25 (2006)

    Article  Google Scholar 

  8. Bauer, F., Reiß, M.: Regularization independent of the noise level: an analysis of quasi-optimality. Inverse Probl. 24, 5 (2008)

    Google Scholar 

  9. Biological General Repository for Interaction Datasets, Biogrid 3.2

    Google Scholar 

  10. Cao, J., Zhao, H.: Estimating dynamic models for gene regulation networks. Bioinformatics 24, 1619–1624 (2008)

    Article  Google Scholar 

  11. Caraiani, P.: Using complex networks to characterize international business cycles. PLoS ONE 8(3), 58109 (2013)

    Article  Google Scholar 

  12. Cooper, G.F.: The computational complexity of probabilistic inference using Bayesian belief networks. Artif. Intell. 42, 393–405 (1990)

    Article  MATH  Google Scholar 

  13. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)

    Article  MATH  Google Scholar 

  14. Ebert-Uphoff, I., Deng, Y.: Causal discovery for climate research using graphical models. J. Clim. 25, 5648–5665 (2012)

    Article  Google Scholar 

  15. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic, Dordrecht (1996)

    Book  MATH  Google Scholar 

  16. Fornasier, M.: Theoretical Foundations and Numerical Methods for Sparse Recovery. de Gruyter, Berlin (2010)

    Book  MATH  Google Scholar 

  17. Fujita, A., Sato, J.R., Garay-Malpartida, H.M., Yamaguchi, R., Miyano, S., Ferreira, C.E.: Modeling gene expression regulatory networks with the sparse vector autoregressive model. BMC Syst. Biol. 1, 37 (2007)

    Article  Google Scholar 

  18. Granger, C.W.J.: Investigating causal relations by econometric and cross-spectral methods. Econometrica 37, 424–438 (1969)

    Article  Google Scholar 

  19. Grasmair, M., Haltmeier, M., Scherzer, O.: Sparse regularization with \(l^{q}\) penalty term. J. Inverse Probl. 24(5), 13 (2008)

    MathSciNet  Google Scholar 

  20. Hasings, C., Mosteller, F., Tukey, J.W., Winsor, C.P.: Low moments for small samples: a comparative study of order statistics. Ann. Math. Stat. 18, 413–426 (1947)

    Article  Google Scholar 

  21. Hlaváčková-Schindler, K., Bouzari, H.: Granger Lasso causal models in high dimensions: application to gene expression regulatory networks, In: The Proceedings of EVML/PKDD 2013, SCALE, Prague (2013)

    Google Scholar 

  22. Jensen, F.V.: An Introduction to Bayesian Networks. UCL Press, London (1996)

    Google Scholar 

  23. Kindermann, S., Neubauer, A.: On the convergence of the quasioptimality criterion for (iterated) Tikhonov regularization. Inverse Probl. Imaging 2(2), 291–299 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Li, X., Rao, S., Jiang, W., Li, C., Xiao, Y., Guo, Z., Zhang, Q., Wang, L., Du, L., Li, J., Li, L., Zhang, T., Wang, Q.K.: Discovery of time-delayed gene regulatory networks based on temporal gene expression profiling. BMC Bioinform. 7, 26 (2006)

    Article  Google Scholar 

  25. Liu, H., Lafferty, J.D., Wasserman, T.: The nonparanormal: semiparametric estimation of high dimensional undirected graphs. J. Mach. Learn. Res. 10, 2295–2328 (2009)

    MATH  MathSciNet  Google Scholar 

  26. Lorenz, D.A., Maass, P., Pham, Q.M.: Gradient descent for Tikhonov functionals with sparsity constraints: theory and numerical comparison of step size rules. Electron. Trans. Numer. Anal. 39, 437–463 (2012)

    MATH  MathSciNet  Google Scholar 

  27. Lozano, A.C., Abe, N., Liu, Y., Rosset, S.: Grouped graphical Granger modeling for gene expression regulatory networks discovery. ISMB 25, i110–i118 (2009)

    Google Scholar 

  28. Marinazzo, D., Pellicoro, M., Stramaglia, S.: Kernel-Granger causality and the analysis of dynamic networks. Phys. Rev. E 77, 056215 (2008)

    Article  Google Scholar 

  29. Marinazzo, D., Pellicoro, M., Stramaglia, S.: Causal information approach to partial conditioning in multivariate data sets. Comput. Math. Methods Med. 2012, 8 (2012)

    Article  MathSciNet  Google Scholar 

  30. Paluš, M., Komárek, V., Procházka, T., Hrnčír, Z., Štěrbová, K.: Synchronization and information flow in EEGs of epileptic patients. IEEE Eng. Med. Biol. Mag. 20(5), 65–71 (2001)

    Article  Google Scholar 

  31. Pearl, J.: Probabilistic reasoning in intelligent systems. Morgan Kaufmann, San Mateo (1988)

    Google Scholar 

  32. Pereverzev, S., Schock, E.: On the adaptive selection of the parameter in regularization of ill-posed problems. SIAM J. Numer. Anal. 43, 2060–2076 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Pereverzyev Jr, S., Hlaváčková-Schindler, K.: Graphical Lasso Granger method with two-level-thresholding for recovering causality networks, Research Report, 09/13. Leopold Franzens Universität Innsbruck, Department of Applied Mathematics (2013)

    Google Scholar 

  34. Ramlau, R., Teschke, G.: A Tikhonov-based projection iteration for nonlinear ill-posed problems with sparsity constraints. J. Numer. Math. 104(2), 177–203 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  35. Sambo, F., Camillo, B.D., Toffolo, G.: CNET: an algorithm for reverse engineering of causal gene networks, NETTAB2008. Varenna, Italy (2008)

    Google Scholar 

  36. Seth, A.K.: Causal connectivity of evolved neural networks during behavior. Netw.-Comput. Neural Syst. 16(1), 35–54 (2005)

    Article  MathSciNet  Google Scholar 

  37. Shmulevich, I., Dougherty, E.R., Kim, S., Zhang, W.: Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2), 261–274 (2002)

    Article  Google Scholar 

  38. Shojaie, A., Michalidis, G.: Discovering graphical Granger causality using the truncating lasso penalty. Bioinformatics 26(18), i517–i523 (2010)

    Article  Google Scholar 

  39. Shojaie, A., Basu, S. Michalidis, G.: Adaptive thresholding for reconstructing regulatory networks from time course gene expression data (2011). http://www.biostat.washington.edu

  40. Steinhaeuser, K., Ganguly, A.R., Chawla, N.V.: Multivariate and multiscale dependence in the global climate system revealed through complex networks. Clim. Dyn. 39, 889–895 (2012)

    Article  Google Scholar 

  41. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. B 58, 267–288 (1996)

    MATH  MathSciNet  Google Scholar 

  42. Tikhonov, A.N., Glasko, V.B.: Use of the regularization method in non-linear problems. Scmmp 5, 93–107 (1965)

    Google Scholar 

  43. http://www-scf.usc.edu/~mohammab/codes/codes.htm

  44. Whitfield, M.L., Sherlock, G., Saldanha, A.J., Murray, J.I., Ball, C.A., Alexander, K.E., Matese, J.C., Perou, C.M., Hurt, M.M., Brown, P.O., Botstein, D.: Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. Biol. Cell 13(6), 1977–2000 (2002)

    Article  Google Scholar 

  45. Wiener, N.: The theory of prediction. In: Beckenbach, E.F. (ed.) Modern Mathematics for Engineers. McGraw-Hill, New York (1956)

    Google Scholar 

  46. Wikipedia, Causality, The Free Encyclopedia (2013)

    Google Scholar 

  47. Yu, J., Smith, V.A., Wang, P.P., Hartemink, A.J., Jarvis, E.D.: Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20, 35943603 (2004)

    Google Scholar 

  48. Zou, M., Conzen, S.D.: A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21, 7179 (2005)

    Article  Google Scholar 

  49. Zou, C., Feng, J.: Granger causality vs dynamic Bayesian network inference: a comparative study. BMC Bioinform. 10, 122 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The first author gratefully acknowledges the partial support by the research grant GACR 13-13502S of the Grant Agency of the Czech Republic (Czech Science Foundation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kateřina Hlaváčková-Schindler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hlaváčková-Schindler, K., Pereverzyev, S. (2015). Lasso Granger Causal Models: Some Strategies and Their Efficiency for Gene Expression Regulatory Networks. In: Guy, T., Kárný, M., Wolpert, D. (eds) Decision Making: Uncertainty, Imperfection, Deliberation and Scalability. Studies in Computational Intelligence, vol 538. Springer, Cham. https://doi.org/10.1007/978-3-319-15144-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15144-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15143-4

  • Online ISBN: 978-3-319-15144-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics