Skip to main content

A Novel Cysteine Sulfinic Acid Decarboxylase Knock-Out Mouse: Comparison Between Newborn and Weanling Mice

  • Conference paper
Taurine 9

Abstract

We developed a novel cysteine sulfinic acid decarboxylase knockout mouse (CSAD KO) to investigate the critical roles of taurine. The absence of the CSAD gene was confirmed using Southern, northern and western blotting; homozygous (CSAD−/−) and heterozygous (CSAD+/-) animals were identified using PCR. Plasma taurine concentrations were decreased by 86 % in CSAD−/− animals. Reproductive performance was poor in the second and later CSAD−/− generations but was restored by supplementing the drinking water with 0.05 % taurine. Taurine concentrations at postnatal day 1 (PD1) in generation 1 (G1) CSAD−/− were close to normal presumably due to taurine transport through the placenta from the CSAD+/− dam. In contrast, taurine concentrations in the brain and liver of G2, G3, and G4 CSAD−/− were very low at birth. At 1 month of age (1 M), 1 week after weaning, the G1 CSAD−/− taurine concentration in the liver decreased to the same level as G2, G3, and G4 CSAD−/−. Taurine concentrations in all CSAD−/− at 1 M were reduced to 44 % of WT in the brain and 5 % in the liver. Taurine supplementation restored brain levels to 76 % of WT but had little effect on the liver. Gene expression in CSAD−/− brain and liver was compared to WT at PD1 and 1 M. Expression of the prolactin receptor and lactoferrin genes was decreased in CSAD−/− at both PD1 and 1 M. Metabolic genes including serine dehydratase and uridine phosphorylase 2 were increased significantly at PD1 but not at 1 M. An oxidative stress gene, glutathioneperoxidase 3 was increased in CSAD KO−/− at both PD1 and 1 M. Expression of taurine metabolism genes, cysteine dioxygenase (Cdo), cysteamine dioxygenase and the taurine transporter (TauT) were unaffected at PD1. At 1 M, however, TauT in CSAD−/− liver was increased twofold, while Cdo was decreased compared to WT. These data indicate that the CSAD KO mouse is a powerful model for exploring the role of taurine deficiency in various disorders especially since the requirement for taurine can be supplied in food or water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CSAD:

Cysteine sulfinic acid decarboxylase

CSAD KO:

Cysteine sulfinic acid decarboxylase knockout mice

CDO:

Cysteine dioxygenase

CDO KO:

Cysteine dioxygenase knockout mice

ADO:

Cysteamine (2-aminoenthanethiol) dioxygenase

WT:

Wild type (CSAD+/+)

HT:

Heterozygotic mice (CSAD+/−)

HO:

Homozygotic mice (CSAD−/−)

HOT:

Homozygotic mice treated with 0.05 % taurine

TauT:

Taurine transporter

TauT KO:

Taurine transporter knockout mice

Gpx 1:

Glutathione peroxidase 1

Gpx 3:

Glutathione peroxidase 3

Prdx 2:

Peroxireductase 2

Prdx 3:

Peroxireductase 3

Prlr:

Prolactin receptor

Ltf:

Lactoferrin

Upp 2:

Uridine phosphorylase 2

Sds:

Serine dehydratase

G1 G2, G3, G4:

Generation 1, 2, 3 and 4

G1 HO:

HO (CSAD−/−) mice born from HT (CSAD+/−) parents

G2 or G3 HO:

Mice born from G1 HO or G2 HO parents

References

  • Battaglia A, Bortoluzza A, Galbucci F, Eusebi V, Giorgianni P, Ricci R, Tosi R, Tugnoli V (1999) High performance liquid chromatographic analysis of physiological amino acids in human brain tumor by pre-column derivatization with phenylisothiocyanate. J Chromatogr B Biomed Sci Appl 730:81–93

    Article  CAS  PubMed  Google Scholar 

  • Bella DL, Kwon YH, Hirschberger LL, Stipanuk MH (2000) Post-transcriptional regulation of cysteine dioxygenase in rat liver. Adv Exp Med Biol 483:71–85

    Article  CAS  PubMed  Google Scholar 

  • Binart N, Bachelot A, Bouilly J (2010) Impact of prolactin receptor isoforms on reproduction. Trends Endocrinol Metab 21:362–368

    Article  CAS  PubMed  Google Scholar 

  • Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA (1998) Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev 19(3):225–268

    Article  CAS  PubMed  Google Scholar 

  • Bonhaous DW, Pasantes-Morales H, Huxtable RJ (1985) Actions of guanidinoethane sulfonate on taurine concentration, retinal morphology and seizure threshold in the neonatal rat. Neurochem Int 7:263–270

    Article  Google Scholar 

  • Brigelius-Flohe R, Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta 1830(5):3289–3303

    Article  CAS  PubMed  Google Scholar 

  • Brooks CL (2012) Molecular mechanisms of prolactin and its receptor. Endocr Rev 33(4):1–22

    Google Scholar 

  • Dela Rosa J, Stipanuk MH (1984) Effect of guanidinoethanesulfonate administration on taurine levels in rat dams and their pups. Nutr Rep Int 30:1121–1125

    CAS  Google Scholar 

  • Dominy JE, Simmons CR, Hirshberger LL, Hwang J, Coloso RM, Stipanuk MH (2007) Discovery and characterization of a second mammalian thiol dioxygenase, cysteamine dioxygenase. J Biol Chem 282:25189–25251

    Article  CAS  PubMed  Google Scholar 

  • Grillo MA, Lanza A, Colombatto S (2008) Transport of amino acids through the placenta and their role. Amino Acids 34(4):517–523

    Article  CAS  PubMed  Google Scholar 

  • Heller-Stilb B, van Royen C, Rascher K, Hartwig HG, Huth A, Seeliger MW, Warskulat U, Haeussinger D (2002) Disruption of the taurine transporter gene (taut) leads to retinal degeneration in mice. FASEB J 16:231–233

    CAS  PubMed  Google Scholar 

  • Hosokawa Y, Matumoto A, Oka J, Itakura H, Yamaguchi K (1990) Isolation and characterization of a complementary DNA for rat liver cysteine dioxygenase. Biochem Biophys Res Commun 168:473–478

    Article  CAS  PubMed  Google Scholar 

  • Huxtable RJ (2000) Expanding the Circle 1975–1999: sulfur biochemistry and insights on the biological functions of taurine. Adv Exp Med Biol 483:1–25

    Article  CAS  PubMed  Google Scholar 

  • Imai S, Kanamoto R, Yagi I, Kotaru M, Saeki T, Iwami K (2003) Response of the induction of rat liver serine dehydratase to changes in the dietary protein requirement. Biosci Biotechnol Biochem 67(2):383–387

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa E, Ninagawa T, Suda M (1965) Hormonal and dietary control of serine dehydratase in rat liver. J Biochem 57(4):506–513

    CAS  PubMed  Google Scholar 

  • Ito T, Kimura Y, Uozumi Y, Takai M, Muraoka S, Matsuda T, Ueki K, Yoshiyama M, Ikawa M, Okabe M, Schaffer SW, Fujio Y, Azuma J (2008) Taurine depletion caused by knocking out the taurine transporter gene leads to cardiomyopathy with cardiac atrophy. J Mol Cell Cardiol 44:927–937

    Article  CAS  PubMed  Google Scholar 

  • Johansson M (2003) Identification of a novel human uridine phosphorylase. Biochem Biophys Res Commun 307:41–46

    Article  CAS  PubMed  Google Scholar 

  • Jong CJ, Ito T, Mozaffari M, Azuma J, Schaffer S (2010) Effect of beta-alanine treatment on mitochondrial taurine level and 5-taurinomethyluridine content. J Biomed Sci 17(Suppl 1):S25. doi:10.1186/1423-0127-17-S1-S25

    Article  PubMed Central  PubMed  Google Scholar 

  • Legrand D (2012) Lactoferrin, a key molecule in immune and inflammatory processes. Biochem Cell Biol 90(3):252–268

    Article  CAS  PubMed  Google Scholar 

  • Legrand D, Mazurier J (2010) A critical review of the roles of host lactoferrin in immunity. Biometals 23(3):365–376

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Flores I, Peragon J, Valderraa R, Esteban FJ, Luque F, Peinado MA, Aranda F, Lupianez JA, Barroso JB (2006) Down-regulation in the expression of the serine dehydratase in the rat liver during chronic metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 291(5):R295–R302

    Article  Google Scholar 

  • Lubos E, Loscalzo J, Handy DE (2011) Glutathione peroxidase-1 in health and disease: from molecular mechanism to therapeutic opportunities. Antioxid Redox Signal 15(7):1957–1997

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Masuda T, Ogawa H, Matsushima T, Kawamata S, Sasahara M, Kuroda K, Suzuki Y, Takata Y, Ymazaki M, Takusagawa F, Pitot HC (2003) Localization and hormonal control of serine dehydratase during metabolic acidosis differ markedly from those of phosphoenolpyruvate carboxykinase in rat kidney. Int J Biochem Cell Biol 35(8):1234–1247

    Article  CAS  PubMed  Google Scholar 

  • Park E, Park SY, Wang C, Xu J, LaFauci G, Schuller-Levis G (2002) Cloning of murine cysteine sulfinic acid decarboxylase and its mRNA expression in murine tissues. Biochim Biophys Acta 1574:403–406

    Article  CAS  PubMed  Google Scholar 

  • Park E, Park SY, Dobkin C, Schuller-Levis G (2014) Development of a novel cysteine sulfinic acid decarboxylase knockout mouse: dietary taurine reduces neonatal mortality. J Amino Acids Article ID 346809, 1–11

    Google Scholar 

  • Roman HB, Hirschberger LL, Krijt J, Valli A, Kozich V, Stipanuk MH (2013) The cysteine dioxygenase knockout mouse: altered cysteine metabolism in nonhepatic tissues leads to excess H2S/HS- production and evidence of pancreatic and lung toxicity. Antioxid Redox Signal. doi:10.1089/ars.2012.5010

    PubMed Central  PubMed  Google Scholar 

  • Roosild TP, Castronovo S, Villoso A, Ziemba A, Pizzorno G (2011) A novel structural mechanism for redox regulation of uridine phosphorylase 2 activity. J Struct Biol 176(2):229–237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schaffer SW, Azuma J, Mozaffari M (2009) Role of antioxidant activity of taurine in diabetes. Can J Physiol Pharmacol 87(2):91–99

    Article  CAS  PubMed  Google Scholar 

  • Schuller-Levis G, Park E (2006) Is taurine a biomarker? Adv Clin Chem 41:1–21

    Article  CAS  Google Scholar 

  • Stipanuk MH (2004) Role of the liver in regulation of body cysteine and taurine levels: a brief review. Neurochem Res 29:105–110

    Article  CAS  PubMed  Google Scholar 

  • Sturman JA (1993) Taurine in development. Physiol Rev 73:119–146

    CAS  PubMed  Google Scholar 

  • Sturman JA, Messing JM (1991) Dietary taurine content and feline production and outcome. J Nutr 121:1195–1203

    CAS  PubMed  Google Scholar 

  • Sturman JA, Messing JM (1992) High dietary taurine effects on feline tissue taurine concentrations and reproductive performance. J Nutr 122:82–88

    CAS  PubMed  Google Scholar 

  • Uchida S, Kwon HM, Yamauchi A, Preston AS, Marumo F, Handler JS (1992) Molecular cloning of the cDNA for an MDCK cell Na(+)- and Cl (-)-dependent taurine transporter that is regulated by hypertonicity. Proc Natl Acad Sci U S A 89:8230–8234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ueki I, Roman HB, Valli A, Fieselmann K, Lam J, Peters R, Hirschberger LL, Stipanuk MH (2011) Knockout of the murine cysteine dioxygenase gene results in severe impairment in ability to synthesize taurine and an increased catabolism of cysteine to hydrogen sulfide. Am J Physiol Endocrinol Metab 301:E668–E684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ueki I, Roman HB, Hirschberger LL, Junior C, Stipanuk MH (2012) Extrahepatic tissues compensate for loss of hepatic taurine synthesis in mice with liver-specific knockout of cysteine dioxygenase. Am J Physiol Endocrinol Metab 302:E1292–E1299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wan L, Cao D, Zeng J, Ziemba A, Pizzorno G (2010) Activation of Stat1, IRF-1 and NF-kappaB is required for the induction of uridine phosphorylase by tumor necrosis factor-alpha and interferon-gamma. Nucleosides Nucleotides Nucleic Acids 29(4–6):488–503

    Article  CAS  PubMed  Google Scholar 

  • Ward PP, Conneely OM (2004) Lactoferrin: role in iron homeostasis and host defense against microbial infection. Biometals 17(4):204–208

    Google Scholar 

  • Warsulat U, Heller-Stilb B, Oermann E, Zilles K, Haas H, Lang F, Haessinger D (2007) Phenotype of the taurine transporter knockout mouse. Methods Enzymol 428:439–458

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Office for People with Developmental Disabilities, Albany, NY and Dong A Pharmaceutical Co., LTD, Seoul, Korea. We are thankful to Drs. John Sturman and William Levis for discussing the research and reviewing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunkyue Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Park, E., Park, S.Y., Dobkin, C., Schuller-Levis, G. (2015). A Novel Cysteine Sulfinic Acid Decarboxylase Knock-Out Mouse: Comparison Between Newborn and Weanling Mice. In: Marcinkiewicz, J., Schaffer, S. (eds) Taurine 9. Advances in Experimental Medicine and Biology, vol 803. Springer, Cham. https://doi.org/10.1007/978-3-319-15126-7_1

Download citation

Publish with us

Policies and ethics