Skip to main content

Automatic Image Collection of Objects with Similar Function by Learning Human Grasping Forms

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8869))

Abstract

This paper proposes an automatic functional object segmentation method based on modeling the relationship between grasping hand form and the object appearance. First the relationship among a representative grasping pattern and a position and pose of a object relative to the hand is learned based on a few typical functional objects. By learning local features from the hand grasping various tools with various way to hold them, the proposed method can estimate the position, scale, direction of the hand and the region of the grasped object. By some experiments, we demonstrate that the proposed method can detect them in cluttered backgrounds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346–359 (2008). http://www.sciencedirect.com/science/article/pii/S1077314207001555

    Article  Google Scholar 

  2. Bub, D., Masson, M.: Gestural knowledge evoked by objects as part of conceptual representations. Aphasiology 20(9), 1112–1124 (2006). http://www.tandfonline.com/doi/abs/10.1080/02687030600741667

    Article  Google Scholar 

  3. Filipovych, R., Ribeiro, E.: Recognizing primitive interactions by exploring actor-object states. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–7 (2008)

    Google Scholar 

  4. Gibson, J.J.: The Ecological Approach to Visual Perception. Lawrence Erlbaum Associates, Hillsdale (1986). http://www.worldcat.org/isbn/0898599598

    Google Scholar 

  5. Grabner, H., Gall, J., Van Gool, L.: What makes a chair a chair? In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1529–1536 (2011)

    Google Scholar 

  6. Gupta, A., Kembhavi, A., Davis, L.S.: Observing human-object interactions: using spatial and functional compatibility for recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(10), 1775–1789 (2009). http://dx.doi.org/10.1109/TPAMI.2009.83

    Article  Google Scholar 

  7. Jiang, Y., Lim, M., Saxena, A.: Learning object arrangements in 3D scenes using human context. In: Proceedings of the 29th International Conference on Machine Learning (ICML 2012), pp. 1543–1550 (2012)

    Google Scholar 

  8. Kamakura, N., Matsuo, M., Ishii, H., Mitsuboshi, F., Miura, Y.: Patterns of static prehension in normal hands. Am. J. Occup. Ther. 34(7), 437–445 (1980). http://ajot.aotapress.net/content/34/7/437.abstract

    Article  Google Scholar 

  9. Leibe, B., Leonardis, A., Schiele, B.: Combined object categorization and segmentation with an implicit shape model. In: ECCV Workshop on Statistical Learning in Computer Vision, pp. 17–32 (2004). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.5.6272

  10. Lepetit, V., Fua, P.: Keypoint recognition using randomized trees. IEEE Trans. Pattern Anal. Mach. Intell. 28(9), 1465–1479 (2006)

    Article  Google Scholar 

  11. Madry, M., Afkham, H.M., Ek, C.H., Carlsson, S., Kragic, D.: Extracting essential local object characteristics for 3D object categorization. In: 2013 Proceedings of IEEE International Conference on Intelligent Robots and Systems, TuAT4.5 2013 (2013)

    Google Scholar 

  12. Napier, J.R.: The prehensile movements of the human hand. J. Bone Joint Surg. 38(4), 902–913 (1956)

    Google Scholar 

  13. Pieropan, A., Ek, C.H., Kjellström, H.: Functional object descriptors for human activity modeling. In: 2013 Proceedings of International Conference on Robotics and Automation, pp. 1282–1289 (2013)

    Google Scholar 

  14. Rivlin, E., Dickinson, S., Rosenfeld, A.: Recognition by functional parts [function-based object recognition]. In: 1994 Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1994, pp. 267–274 (1994)

    Google Scholar 

  15. Schölkopf, B., Platt, J.C., Shawe-Taylor, J.C., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001). http://dx.doi.org/10.1162/089976601750264965

    Article  MATH  Google Scholar 

  16. Sgorbissa, A., Verda, D.: Structure-based object representation and classification in mobile robotics through a microsoft kinect. Robot. Auton. Syst. 61(12), 1665–1679 (2013)

    Article  Google Scholar 

  17. Shotton, J., Blake, A., Cipolla, R.: Contour-based learning for object detection. In: 2005 Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 1, pp. 503–510. IEEE (2005)

    Google Scholar 

  18. Winn, J., Shotton, J.: The layout consistent random field for recognizing and segmenting partially occluded objects. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 37–44. IEEE (2006)

    Google Scholar 

  19. Wu, B., Nevatia, R.: Detection of multiple, partially occluded humans in a single image by bayesian combination of edgelet part detectors. In: Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV 2005), vol. 1, pp. 90–97. IEEE Computer Society, Washington, DC (2005). http://dx.doi.org/10.1109/ICCV.2005.74

  20. Wu, J., Osuntogun, A., Choudhury, T., Philipose, M., Rehg, J.: A scalable approach to activity recognition based on object use. In: 2007 IEEE 11th International Conference on Computer Vision, ICCV 2007, pp. 1–8 (2007)

    Google Scholar 

  21. Zhang, H., Bai, X., Zhou, J., Cheng, J., Zhao, H.: Object detection via structural feature selection and shape model. IEEE Trans. Image Process. 22(12), 4984–4995 (2013)

    Article  MathSciNet  Google Scholar 

  22. Zhang, X., Yang, Y.H., Han, Z., Wang, H., Gao, C.: Object class detection: a survey. ACM Comput. Surv. 46(1), 10:1–10:53 (2013). http://doi.acm.org/10.1145/2522968.2522978

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Matsuo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Morioka, S., Matsuo, T., Hiramoto, Y., Shimada, N., Shirai, Y. (2015). Automatic Image Collection of Objects with Similar Function by Learning Human Grasping Forms. In: Schwenker, F., Scherer, S., Morency, LP. (eds) Multimodal Pattern Recognition of Social Signals in Human-Computer-Interaction. MPRSS 2014. Lecture Notes in Computer Science(), vol 8869. Springer, Cham. https://doi.org/10.1007/978-3-319-14899-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14899-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14898-4

  • Online ISBN: 978-3-319-14899-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics