Skip to main content

Diamond-Like Carbon Coatings with Special Wettability for Automotive Applications

  • Chapter
Coating Technology for Vehicle Applications

Abstract

Surface modification is an effective way of improving the tribological properties of base materials and is now actively being used in the automotive industry. Surface wettability can affect the overall performance of automotive components, such as windshields and mirrors, and controlling the surface hydrophobicity or hydrophilicity has been a major focus of research work in this industry. Diamond-like carbon (DLC), which is an amorphous carbon compound with outstanding mechanical and tribological properties, has gained considerable attention as a superior functional coating material and has been successfully applied to a range of mechanical automotive components, leading to better performance and durability. Recently, DLC-based materials with special wettability have been successfully used for the development of superhydrophobic and superhydrophilic surfaces, and a variety of industrial as well as biomedical applications have been proposed. Undoubtedly, being able to control the surface wettability using such DLC-based materials with tunable wettability would expand the original capabilities of the materials used in the automotive industry today. In this chapter, after giving a brief introduction to the fundamentals of surface wettability in relation to DLC coatings, we review recent studies on the control of surface wettability using DLC-based materials and then discuss future outlook.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. R. Sayer, M. L. Mefford, M. J. Flannagan, M. Sivak, S. Kojima (1997). The influence of hydrophobic windshield coating on driver visual performance. UMTRI-97-31.

    Google Scholar 

  2. J. R. Sayer, M. L. Mefford, M. J. Flannagan, M. Sivak (1999). The effects of hydrophobic treatment of the driver-side window and rearview mirror on distance judgement. UMTRI-99-22.

    Google Scholar 

  3. J. R. Sayer, M. L. Mefford (2001). The effect of hydrophilic and hydrophobic rear window treatments on visual performance, The University of Michigan Transportation Research Institute. UMTRI-2001-21.

    Google Scholar 

  4. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Light-induced amphiphilic surfaces. Nature 388 (1997) 431.

    Article  Google Scholar 

  5. A. R. Parker, C. R. Lawrence, Water capture by a desert beetle. Nature 414 (2001) 33.

    Article  Google Scholar 

  6. I. P. Parkin, R. G. Palgrave, Self-cleaning coatings. Journal of Materials Chemistry 15 (2005) 1689.

    Article  Google Scholar 

  7. A. H. Yan, X. C. Xiao, I. Kulaots, B. W. Sheldon, R. H. Hurt, Controlling water contact angle on carbon surfaces from 5 degrees to 167 degrees. Carbon 44 (2006) 3116.

    Article  Google Scholar 

  8. R. N. Wenzel, Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry 28 (1936) 988.

    Article  Google Scholar 

  9. A. B. D. Cassie, S. Baxter, Wettability of porous surfaces. Transactions of the Faraday Society 40 (1944) 546.

    Article  Google Scholar 

  10. V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, C. Fotakis, Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf. Advanced Materials 20 (2008) 4049.

    Article  Google Scholar 

  11. K. Koch, W. Barthlott, Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences 367 (2009) 1487.

    Article  Google Scholar 

  12. W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202 (1997) 1.

    Article  Google Scholar 

  13. Y. M. Zheng, D. Han, J. Zhai, L. Jiang, In situ investigation on dynamic suspending of microdroplet on lotus leaf and gradient of wettable micro- and nanostructure from water condensation. Applied Physics Letters 92 (2008) 084106.

    Article  Google Scholar 

  14. H. F. Meng, S. T. Wang, J. M. Xi, Z. Y. Tang, L. Jiang, Facile means of preparing superamphiphobic surfaces on common engineering metals. Journal of Physical Chemistry C 112 (2008) 11454.

    Article  Google Scholar 

  15. J. M. Xi, L. Feng, L. Jiang, A general approach for fabrication of superhydrophobic and superamphiphobic surfaces. Applied Physics Letters 92 (2008) 053102.

    Article  Google Scholar 

  16. W. C. Wu, X. L. Wang, D. A. Wang, M. Chen, F. Zhou, W. M. Liu, Q. J. Xue, Alumina nanowire forests via unconventional anodization and super-repellency plus low adhesion to diverse liquids. Chemical Communications (2009) 1043.

    Google Scholar 

  17. T.-Y. Kim, B. Ingmar, K. Bewilogua, K. H. Oh, K.-R. Lee, Wetting behaviours of a-C:H:Si:O film coated nano-scale dual rough surface. Chemical Physics Letters 436 (2007) 199.

    Article  Google Scholar 

  18. Y. Rahmawan, M.-W. Moon, K.-S. Kim, K.-R. Lee, K.-Y. Suh, Wrinkled, dual-scale structures of diamond-like carbon (DLC) for superhydrophobicity. Langmuir 26 (2010) 484.

    Article  Google Scholar 

  19. T.-G. Cha, J. W. Yi, M.-W. Moon, K.-R. Lee, H.-Y. Kim, Nanoscale patterning of microtextured surfaces to control superhydrophobic robustness. Langmuir 26 (2010) 8319.

    Article  Google Scholar 

  20. Aisenber S., Chabot R. (1971) Ion-beam deposition of thin films of diamondlike carbon. Journal of Applied Physics. 42: 2953.

    Article  Google Scholar 

  21. C. Donnet, J. Fontaine, F. Lefebvre, A. Grill, V. Patel, C. Jahnes, Solid state C-13 and H-1 nuclear magnetic resonance investigations of hydrogenated amorphous carbon. Journal of Applied Physics 85 (1999) 3264.

    Article  Google Scholar 

  22. D. R. McKenzie, Tetrahedral bonding in amorphous carbon. Reports on Progress in Physics 59 (1996) 1611.

    Article  Google Scholar 

  23. J. Robertson, Properties of diamond-like carbon. Surface & Coatings Technology 50 (1992) 185.

    Article  Google Scholar 

  24. A. Erdemir, C. Donnet, Tribology of diamond-like carbon films: recent progress and future prospects. Journal of Physics D-Applied Physics 39 (2006) R311.

    Article  Google Scholar 

  25. K.-R. Lee, Y.-J. Baik, K. Y. Eun, S. Han, Precursor gas effect on the structure and properties of diamond-like carbon-films. Diamond and Related Materials 3 (1994) 1230.

    Article  Google Scholar 

  26. P. A. Dearnley, A. Neville, S. Turner, H. J. Scheibe, R. Tietema, R. Tap, M. Stuber, P. Hovsepian, A. Layyous, B. Stenbom, Coatings tribology drivers for high density plasma technologies. Surface Engineering 26 (2010) 80.

    Article  Google Scholar 

  27. K.-R. Lee, M.-G. Kim, S.-J. Cho, K. Y. Eun, T.-Y. Seong, Structural dependence of mechanical properties of Si incorporated diamond-like carbon films deposited by RF plasma-assisted chemical vapour deposition. Thin Solid Films 308 (1997) 263.

    Article  Google Scholar 

  28. P. Papakonstantinou, J. F. Zhao, P. Lemoine, E. T. McAdams, J. A. McLaughlin, The effects of Si incorporation on the electrochemical and nanomechanical properties of DLC thin films. Diamond and Related Materials 11 (2002) 1074.

    Article  Google Scholar 

  29. T. I. T. Okpalugo, A. A. Ogwu, P. D. Maguire, J. A. D. McLaughlin, Platelet adhesion on silicon modified hydrogenated amorphous carbon films. Biomaterials 25 (2004) 239.

    Article  Google Scholar 

  30. H.-G. Kim, S.-H. Ahn, J.-G. Kim, S. J. Park, K.-R. Lee, Effect of Si-incorporation on wear-corrosion properties of diamond-like carbon films. Thin Solid Films 482 (2005) 299.

    Article  Google Scholar 

  31. P. D. Maguire, J. A. McLaughlin, T. I. T. Okpalugo, P. Lemoine, P. Papakonstantinou, E. T. McAdams, M. Needham, A. A. Ogwu, M. Ball, G. A. Abbas, Mechanical stability, corrosion performance and bioresponse of amorphous diamond-like carbon for medical stents and guidewires. Diamond and Related Materials 14 (2005) 1277.

    Article  Google Scholar 

  32. A. A. Ogwu, T. I. T. Okpalugo, N. Ali, R. D. Maguire, J. A. D. McLaughlin, Endothelial cell growth on silicon modified hydrogenated amorphous carbon thin films. Journal of Biomedical Materials Research Part B-Applied Biomaterials 85B (2008) 105.

    Article  Google Scholar 

  33. B. J. Jones, A. Mahendran, A. W. Anson, A. J. Reynolds, R. Bulpett, J. Franks, Diamond-like carbon coating of alternative metal alloys for medical and surgical applications. Diamond and Related Materials 19 (2010) 685.

    Article  Google Scholar 

  34. T. Saito, T. Hasebe, S. Yohena, Y. Matsuoka, A. Kamijo, K. Takahashi, T. Suzuki, Antithrombogenicity of fluorinated diamond-like carbon films. Diamond and Related Materials 14 (2005) 1116.

    Article  Google Scholar 

  35. T. Hasebe, A. Shimada, T. Suzuki, Y. Matsuoka, T. Saito, S. Yohena, A. Kamijo, N. Shiraga, M. Higuchi, K. Kimura, H. Yoshimura, S. Kuribayashi, Fluorinated diamond-like carbon as antithrombogenic coating for blood-contacting devices. Journal of Biomedical Materials Research Part A 76A (2006) 86.

    Article  Google Scholar 

  36. T. Hasebe, S. Yohena, A. Kamijo, Y. Okazaki, A. Hotta, K. Takahashi, T. Suzuki, Fluorine doping into diamond-like carbon coatings inhibits protein adsorption and platelet activation. Journal of Biomedical Materials Research Part A 83A (2007) 1192.

    Article  Google Scholar 

  37. H. W. Choi, J.-H. Choi, K.-R. Lee, J.-P. Ahn, K. H. Oh, Structure and mechanical properties of Ag-incorporated DLC films prepared by a hybrid ion beam deposition system. Thin Solid Films 516 (2007) 248.

    Article  Google Scholar 

  38. C. S. Lee, K.-R. Lee, K. Y. Eun, K. H. Yoon, J. H. Han, Structure and properties of Si incorporated tetrahedral amorphous carbon films prepared by hybrid filtered vacuum arc process. Diamond and Related Materials 11 (2002) 198.

    Article  Google Scholar 

  39. S. Okuda, T. Dewa, T. Sagawa (2007). Development of 5W-30 GF-4 fuel-saving engine oil for DLC-coated valve lifters. SAE Technical Paper 2007-01-1979.

    Google Scholar 

  40. R. Gahlin, M. Larsson, P. Hedenqvist, Me-C:H coatings in motor vehicles. Wear 249 (2001) 302.

    Article  Google Scholar 

  41. M. Kalin, J. Vizintin, The tribological performance of DLC-coated gears lubricated with biodegradable oil in various pinion/gear material combinations. Wear 259 (2005) 1270.

    Article  Google Scholar 

  42. A. Gangopadhyay, D. G. McWatt, R. J. Zdrodowski, S. J. Simko, S. Matera, K. Sheffer, R. S. Furby, Valvetrain friction reduction through thin film coatings and polishing. Tribology Transactions 55 (2012) 99.

    Article  Google Scholar 

  43. M. Grischke, A. Hieke, F. Morgenweck, H. Dimigen, Variation of the wettability of DLC-coatings by network modification using silicon and oxygen. Diamond and Related Materials 7 (1998) 454.

    Article  Google Scholar 

  44. E. K. Her, T.-J. Ko, K.-R. Lee, K. H. Oh, M.-W. Moon, Bioinspired steel surfaces with extreme wettability contrast. Nanoscale 4 (2012) 2900.

    Article  Google Scholar 

  45. T.-J. Ko, E. K. Her, B. Shin, H.-Y. Kim, K.-R. Lee, B. K. Hong, S. H. Kim, K. H. Oh, M.-W. Moon, Water condensation behavior on the surface of a network of superhydrophobic carbon fibers with high-aspect-ratio nanostructures. Carbon 50 (2012) 5085.

    Article  Google Scholar 

  46. E. K. Her, T.-J. Ko, B. Shin, H. Roh, W. Dai, W. K. Seong, H.-Y. Kim, K.-R. Lee, K. H. Oh, M.-W. Moon, Superhydrophobic transparent surface of nanostructured poly(methyl methacrylate) enhanced by a hydrolysis reaction. Plasma Processes and Polymers 10 (2013) 481.

    Article  Google Scholar 

  47. E. Yu, H. J. Lee, T.-J. Ko, S. J. Kim, K.-R. Lee, K. H. Oh, M.-W. Moon, Hierarchical structures of AlOOH nanoflakes nested on Si nanopillars with anti-reflectance and superhydrophobicity. Nanoscale 5 (2013) 10014.

    Article  Google Scholar 

  48. S.-C. Cha, E. K. Her, T.-J. Ko, S. J. Kim, H. Roh, K.-R. Lee, K. H. Oh, M.-W. Moon, Thermal stability of superhydrophobic, nanostructured surfaces. Journal of Colloid and Interface Science 391 (2013) 152.

    Article  Google Scholar 

  49. R. S. Butter, D. R. Waterman, A. H. Lettington, R. T. Ramos, E. J. Fordham, Production and wetting properties of fluorinated diamond-like carbon coatings. Thin Solid Films 311 (1997) 107.

    Article  Google Scholar 

  50. G. Q. Yu, B. K. Tay, Z. Sun, Fluorinated amorphous diamond-like carbon films deposited by plasma-enhanced chemical vapor deposition. Surface & Coatings Technology 191 (2005) 236.

    Article  Google Scholar 

  51. R. K. Roy, H. W. Choi, J. W. Yi, M.-W. Moon, K.-R. Lee, D. K. Han, J. H. Shin, A. Kamijo, T. Hasebe, Hemocompatibility of surface-modified, silicon-incorporated, diamond-like carbon films. Acta Biomaterialia 5 (2009) 249.

    Article  Google Scholar 

  52. T. Hasebe, S. Nagashima, A. Kamijo, M.-W. Moon, Y. Kashiwagi, A. Hotta, K.-R. Lee, K. Takahashi, T. Yamagami, T. Suzuki, Hydrophobicity and non-thrombogenicity of nanoscale dual rough surface coated with fluorine-incorporated diamond-like carbon films: Biomimetic surface for blood-contacting medical devices. Diamond and Related Materials 38 (2013) 14.

    Article  Google Scholar 

  53. S. Nagashima, T. Hasebe, A. Kamijo, Y. Yoshimoto, A. Hotta, H. Morita, H. Terada, M. Tanaka, K. Takahashi, T. Suzuki, Effect of oxygen plasma treatment on non-thrombogenicity of diamond-like carbon films. Diamond and Related Materials 19 (2010) 861.

    Article  Google Scholar 

  54. J. W. Yi, M.-W. Moon, S. F. Ahmed, H. Kim, T.-G. Cha, H.-Y. Kim, S.-S. Kim, K.-R. Lee, Long-lasting hydrophilicity on nanostructured Si-incorporated diamond-like carbon films. Langmuir 26 (2010) 17203.

    Article  Google Scholar 

  55. S. J. Kim, M.-W. Moon, K.-R. Lee, D.-Y. Lee, Y. S. Chang, H.-Y. Kim, Liquid spreading on superhydrophilic micropillar arrays. Journal of Fluid Mechanics 680 (2011) 477.

    Article  Google Scholar 

  56. S. J. Kim, J. Kim, M.-W. Moon, K.-R. Lee, H.-Y. Kim, Experimental study of drop spreading on textured superhydrophilic surfaces. Physics of Fluids 25 (2013) 092110.

    Article  Google Scholar 

  57. K. Bewilogua, G. Brauer, A. Dietz, J. Gabler, G. Goch, B. Karpuschewski, B. Szyszka, Surface technology for automotive engineering. CIRP Annals-Manufacturing Technology 58 (2009) 608.

    Article  Google Scholar 

  58. J. L. Parker, P. M. Claesson, J. H. Wang, H. K. Yasuda, Surface forces between plasma polymer-films. Langmuir 10 (1994) 2766.

    Article  Google Scholar 

  59. D. R. Tallant, J. E. Parmeter, M. P. Siegal, R. L. Simpson, The thermal-stability of diamond-like carbon. Diamond and Related Materials 4 (1995) 191.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung-Woon Moon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nagashima, S., Moon, MW. (2015). Diamond-Like Carbon Coatings with Special Wettability for Automotive Applications. In: Cha, S., Erdemir, A. (eds) Coating Technology for Vehicle Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-14771-0_11

Download citation

Publish with us

Policies and ethics