Skip to main content

Shock Metamorphism

  • Reference work entry
  • First Online:
Encyclopedia of Lunar Science

Definition

Shock metamorphism is the production of irreversible chemical or physical changes in target materials as a result of the passage of shock waves generated from hypervelocity impact events.

Introduction

Natural shock metamorphism is the physical consequence of hypervelocity impact of a projectile (e.g., asteroids and comets) into solid target rock, sediment, and regolith exposed on planetary bodies (Stöffler et al. 2018). During passage of the shockwave generated from the impact event, the increase in internal energy accompanying shock compression and subsequent rarefaction results in a unique set of irreversible deformation effects, referred to as shock metamorphic effects, as well as melting and/or vaporization of a volume of target material close to the point of impact (French and Koeberl 2010; Ferrière and Osinski 2013).

Detailed investigation of shock metamorphic effects in geologic materials dates back to 1950s (e.g., Chao et al. 1960, Chao 1967); although the glassy...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baratoux D, Reimold WU (2016) The current state of knowledge about shatter cones: introduction to the special issue. Meteorit Planet Sci 51:1389–1434

    Article  ADS  Google Scholar 

  • Chao ECT (1967) Impact metamorphism, in P. H. Abelson, Researches in geochemistry 2. New York: Wiley, p 204–233

    Google Scholar 

  • Chao ECT, Shoemaker EM, Madsen BM (1960) First natural occurrence of coesite. Science 132:220–222

    Article  ADS  Google Scholar 

  • Chao ECT, Boreman JA, Desborough GA (1971) The petrology of unshocked and shocked Apollo 11 and Apollo 12 microbreccias. Proc Lunar Planet Sci Conf 2:797–816

    ADS  Google Scholar 

  • Dietz RS (1959) Shatter cones in cryptoexplosion structures (meteorite impact?). J Geol 67:496–505

    Article  ADS  Google Scholar 

  • Donaldson HKL, Pieters CM, Cheek LC, Bowles NE, Dhingra D (2014) Shocked anorthosite: Puzzling over its whereabouts. Lunar Planet Sci Conf 45, 2331 pdf.

    Google Scholar 

  • Ferrière L, Osinski GR (2013) Shock metamorphism. In: Osinski GR, Pierazzo E (eds) Impact cratering: processes and products. Chichester: Wiley–Blackwell, pp 106–124

    Google Scholar 

  • French BM (1998) Traces of Catastrophe: a handbook of shock-metamorphic effects in terrestrial meteorite impact structures, LPI contribution no. 954. Lunar and Planetary Institute, Houston

    Google Scholar 

  • French BM, Koeberl C (2010) The convincing identification of terrestrial meteorite impact structures: what works, what doesn’t, and why. Earth Sci Rev 98:123–170

    Article  ADS  Google Scholar 

  • French BM, Short NM (1968) In: French BM, Short NM (eds) Shock metamorphism of natural materials. Mono Book Corp, Baltimore. 644 p

    Google Scholar 

  • Fritz J, Greshake A, Stöffler D (2005) Micro-Raman spectroscopy of plagioclase and maskelynite in Martian meteorites: evidence for progressive shock metamorphism. Antarctic Meteorite Res 18:96–116

    ADS  Google Scholar 

  • Fritz J, Greshake A, Fernandes VA (2017) Revising the shock classification of meteorites. Meteorit Planet Sci 52:1216–1232

    Article  ADS  Google Scholar 

  • Fritz J, Assis Fernandes V, Greshake A et al (2019) On the formation of diaplectic glass: shock and thermal experiments with plagioclase of different chemical compositions. Meteorit Planet Sci 54:1533–1547

    Article  ADS  Google Scholar 

  • Grieve RAF, Langenhorst F, Stöffler D (1996) Shock metamorphism of quartz in nature and experiment: II. Significance in geoscience. Meteorit Planet Sci 31:6–35

    Article  ADS  Google Scholar 

  • Grieve RAF, Osinski GR, Tornabene LL (2014) Planetary impacts. In: Spohn T, Breuer D, Johnson TV (eds) Encyclopedia of the solar system, 3rd edn. Amsterdam: Elsevier, pp 83–99

    Google Scholar 

  • Hamers MF, Drury MR (2011) Scanning electron microscope-cathodoluminescence (SEM-CL) imaging of planar deformation features and tectonic deformation lamellae in quartz. Meteorit Planet Sci 46:1814–1831

    Article  ADS  Google Scholar 

  • Hörz F, Quaide WL (1973) Debye-Scherrer investigations of experimentally shocked silicates. The Moon 6:45–82

    Article  ADS  Google Scholar 

  • Izawa MRM, Flemming RL, Banerjee NR, McCausland PJA (2011) Micro-X-ray diffraction assessment of shock stage in enstatite chondrites. Meteorit Planet Sci 46:638–651

    Article  ADS  Google Scholar 

  • Jaret SJ, Johnson JR, Sims M, DiFrancesco N, Glotch TD (2018) Microspectroscopic and petrographic comparison of experimentally shocked albite, andesine, and bytownite. J Geophys Res 123:1701–1722

    Article  Google Scholar 

  • Johnson JR (2012) Thermal infrared spectra of experimentally shocked andesine anorthosite. Icarus 221:359–364

    Article  ADS  Google Scholar 

  • Kaneko S, Miyahara M, Ohtani E, Arai T, Hirao N, Sato K (2015) Discovery of Stishovite in Apollo 15299 sample. Am Mineral 100:1308–1311

    Article  ADS  Google Scholar 

  • Kayama M, Nishido H, Sekine T, Nakazato T, Gucsik A, Ninagawa K (2012) Shock barometer using cathodoluminescence of alkali feldspar. J Geophys Res 117:E09004

    Article  ADS  Google Scholar 

  • Kayama M, Sekine T, Tomioka N, Nishido H, Kato Y, Ninagawa K, Kobayashi T, Yamaguchi A (2018) Cathodoluminescence of high-pressure feldspar minerals as a shock barometer. Meteorit Planet Sci 53:1476–1488

    Article  ADS  Google Scholar 

  • Langenhorst F (2002) Shock metamorphism of some minerals: basic introduction and microstructural observations. Bull Czech Geol Surv 77:265–282

    Google Scholar 

  • Martin DJ, Pernet-Fisher JF, Joy KH et al (2017) Investigating the shock histories of lunar meteorites Miller Range 090034, 090070, and 090075 using petrography, geochemistry, and micro-FTIR spectroscopy. Meteorit Planet Sci 52:1103–1124

    Article  ADS  Google Scholar 

  • Ohtake M, Matsunaga T, Haruyama J et al (2009) The global distribution of pure anorthosite on the Moon. Nature 461:236–240

    Article  ADS  Google Scholar 

  • Osinski GR, Ferrière L (2016) Shatter cones: Reviews in Mineralogy and Geochemistry, published jointly by the Mineralogical Society of America and the Geochemical Society (Mis)understood? Sci Adv 2:e1600616

    Google Scholar 

  • Ostertag R (1983) Shock experiments on feldspar crystals. In: Proceedings, 14th Lunar and Planetary Science conference. pp B364–B376

    Google Scholar 

  • Rubin AE (1997) Mineralogy of meteorite groups. Meteorit Planet Sci 32:231–247

    Google Scholar 

  • Papike JJ (1998) Comparative planetary mineralogy; chemistry of melt-derived pyroxene, feldspar, and olivine. Rev Mineral 36:7.1–7.11

    Google Scholar 

  • Pernet-Fisher JF, Joy KH, Martin DJ, Donaldson Hanna KL (2017) Assessing the shock state of the lunar highlands: implications for the petrogenesis and chronology of crustal anorthosites. Nat Sci Rep 7:5888

    ADS  Google Scholar 

  • Pickersgill AE, Flemming RL, Osinski GR (2015a) Toward quantification of strain-related mosaicity in shocked lunar and terrestrial plagioclase by in situ micro-X-ray diffraction. Meteorit Planet Sci 50:1851–1862

    Article  ADS  Google Scholar 

  • Pickersgill AE, Osinski GR, Flemming RL (2015b) Shock effects in plagioclase feldspar from the Mistastin Lake impact structure, Canada. Meteorit Planet Sci 50:1546–1561

    Article  ADS  Google Scholar 

  • Pittarello L, Roszjar J, Mader D, Debaille V, Claeys P, Koeberl C (2015) Cathodoluminescence as a tool to discriminate impact melt, shocked and unshocked volcanics: a case study of samples from the El’gygytgyn impact structure. Meteorit Planet Sci 50:1954–1969

    Article  ADS  Google Scholar 

  • Pittarello L, Fritz J, Roszjar J, Lenz C, Chanmuang NC, Koeberl C (2020) Partial amorphization of experimentally shocked plagioclase: a spectroscopic study. Meteorit Planet Sci 55:669–678

    Google Scholar 

  • Rubin AE (2015) Maskelynite in asteroidal, lunar and planetary basaltic meteorites: an indicator of shock pressure during impact ejection from their parent bodies. Icarus 257:221–229

    Article  ADS  Google Scholar 

  • Sharma SK, Simons B, Yoder HS (1983) Raman study of anorthite, calcium Tschermak’s pyroxene, and gehlenite in crystalline and glassy states. Am Mineral 68:1113–1125

    Google Scholar 

  • Short NM (1970a) Evidence and implications of shock metamorphism in lunar samples. In: Proceedings of the Apollo 11 Lunar science conference, vol 1, pp 865–871

    Google Scholar 

  • Short NM (1970b) The nature of the Moon’s surface: evidence from shock metamorphism in Apollo 11 and 12 samples. Icarus 13:383–413

    Article  ADS  Google Scholar 

  • Smith JV, Anderson AT, Newton RC, Olsen EJ, Wyllie PJ (1970) A petrologic model for the moon based on petrogenesis, experimental petrology, and physical properties. J Geol 78:381–405

    Article  ADS  Google Scholar 

  • Stöffler D (1966) Zones of impact metamorphism in the crystalline rocks of the Nordlinger Ries crater. Contrib to Mineral Petrol 12:15–24

    Google Scholar 

  • Stöffler D (1972) Deformation and transformation of rock-forming minerals by natural and experimental shock processes: I. Behavior of minerals under shock compression. Fortschritte der Mineral 49:50–113

    Google Scholar 

  • Stöffler D (1974) Deformation and transformation of rock forming minerals by natural and experimental shock processes. II. Physical properties of shocked minerals. Fortschr der Mineral 51:256–289

    Google Scholar 

  • Stöffler D, Langenhorst F (1994) Shock metamorphism of quartz in nature and experiment: 1. Basic observation and theory. Meteoritics 29:155–181

    Article  ADS  Google Scholar 

  • Stöffler D, Bischoff A, Buchwald V, Rubin AE (1988) Shock effects in meteorites. In: Meteorites and the early solar system. Tucson: University of Arizona Press, pp 165–202

    Google Scholar 

  • Stöffler D, Hamann C, Metzler K (2018) Shock metamorphism of planetary silicate rocks and sediments: proposal for an updated classification system. Meteorit Planet Sci 53:5–49

    Google Scholar 

  • Tomioka N, Miyahara M (2017) High-pressure minerals in shocked meteorites. Meteorit Planet Sci 52, 2017–2039

    Google Scholar 

  • Tschermak G (1872) Die Meteoriten von Shergotty und Gopalpur, Sitzungsberg. Akad Wiss Wien Math Naturwiss 65(1):122–145

    Google Scholar 

  • von Engelhardt W, Arndt J, Muller WF, Stoffler D (1970) Shock metamorphism in Lunar samples. Science 167:669–670

    Article  ADS  Google Scholar 

  • Wang A, Jolliff BL, Haskin LA (1995) Raman spectroscopy as a method for mineral identification on lunar robotic exploration missions. J Geophys Res 100:121–189, 199

    Article  Google Scholar 

  • Wood JA, Dickey JS, Marvin UB, Powell BN (1970) Lunar anorthosites. Science 167:602–604

    Article  ADS  Google Scholar 

  • Xie T, Osinski GR, Shieh SR (2020) Raman study of shock features in plagioclase feldspar from the Mistastin Lake impact structure, Canada. Meteorit Planet Sci 55:1471–1490

    Article  ADS  Google Scholar 

  • Xie T, Shieh SR, Osinski GR (2021) Raman study of shock effects in lunar anorthite from the Apollo missions. Meteorit Planet Sci 56(9):1633–1651

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon R. Osinski .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Xie, T., Osinski, G.R. (2023). Shock Metamorphism. In: Cudnik, B. (eds) Encyclopedia of Lunar Science. Springer, Cham. https://doi.org/10.1007/978-3-319-14541-9_189

Download citation

Publish with us

Policies and ethics