Skip to main content

Cosmic Rays in the Lunar Environment

  • Reference work entry
  • First Online:
Encyclopedia of Lunar Science

Summary

Cosmic rays are charged particles and atomic nuclei that are created and accelerated primarily by exploding stars throughout our galaxy. Propagating through the interstellar medium and the heliosphere, they assume the characteristic energy spectra that can be observed by space-borne instruments at Earth. Despite the Moon’s lack of an atmosphere and a magnetic field, cosmic rays undergo a series of interactions with the lunar surface that substantially alter the interplanetary radiation field. Most important is the creation of secondary radiation, for example, neutrons, whose spectra contain information about the composition of the lunar surface. Even though cosmic rays and their secondaries have been observed by instruments in orbit around the Moon and on the lunar surface, more detailed investigations are required to fully understand their interaction processes and their implications for future crewed and uncrewed missions to the lunar surface.

Introduction

Cosmic rays are not...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar M, Ali Cavasonza L, Ambrosi G et al (2019) Towards understanding the origin of cosmic-ray positrons. Phys Rev Lett 122(4):041102

    Article  ADS  Google Scholar 

  • Bergström L, Goobar A (2004) Cosmology and particle astrophysics, 2nd edn. Springer, Berlin/Heidelberg

    MATH  Google Scholar 

  • Biermann PL, Gaisser TK, Stanev T (1995) Origin of galactic cosmic rays. Phys Rev D 51(7):3450–3454

    Article  ADS  Google Scholar 

  • Blewett DT, Coman EI, Hawke BR et al (2011) Lunar swirls: examining crustal magnetic anomalies and space weathering trends. J Geophys Res 116:E02002

    ADS  Google Scholar 

  • Farrell WM, Hurley DM, Zimmerman MI (2015) Solar wind implantation into lunar regolith: hydrogen retention in a surface with defects. Icarus 255:116–126

    Article  ADS  Google Scholar 

  • Fegley B, Swindle TD (1993) Lunar volatiles: implications for lunar resource utilization. In: Lewis JS, Matthews MS, Guerrieri ML (eds) Resources of near-earth space. University of Arizona Press, Tucson

    Google Scholar 

  • Feldman WC, Maurice S, Binder AB et al (1998) Fluxes of fast and epithermal neutrons from Lunar Prospector: evidence for water ice at the lunar poles. Science 281(5382):1496–1500

    Article  ADS  Google Scholar 

  • Feldman WC, Lawrence DJ, Elphic RC et al (2000) Chemical information content of lunar thermal and epithermal neutrons. J Geophys Res: Planets 105:20347–20363

    Article  Google Scholar 

  • Funsten HO, Allegrini F, Bochsler PA et al (2013) Reflection of solar wind hydrogen from the lunar surface. J Geophys Res: Planets 118(2):292–305

    Article  ADS  Google Scholar 

  • Gaisser TK, Engel R, Resconi E (2016) Cosmic rays and particle physics, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Glotch TD, Bandfield JL, Lucey PG et al (2015) Formation of lunar swirls by magnetic field standoff of the solar wind. Nat Commun 6:6189

    Article  ADS  Google Scholar 

  • Gosling JT (2014) The solar wind. In: Spohn T, Breuer D, Johnson TV (eds) Encyclopedia of the solar system, 3rd edn. Elsevier, Amsterdam, pp 261–279

    Chapter  Google Scholar 

  • Grupen C (2020) Astroparticle physics, 2nd edn. Springer, Cham

    Book  Google Scholar 

  • Kivelson MG, Bagenal F (2014) Planetary magnetospheres. In: Spohn T, Breuer D, Johnson TV (eds) Encyclopedia of the solar system, 3rd edn. Elsevier, pp 137–157

    Chapter  Google Scholar 

  • Lang KR (2013) Essential astrophysics. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Lawrence DJ, Feldman WC, Barraclough BL et al (1998) Global elemental maps of the Moon: the lunar prospector gamma-ray spectrometer. Science 281(5382):1484–1489

    Article  ADS  Google Scholar 

  • Litvak ML, Mitrofanov IG, Sanin A et al (2012) Global maps of lunar neutron fluxes from the LEND instrument. J Geophys Res: Planets 117(E12):E00H22

    Article  Google Scholar 

  • Longair MS (2012) High energy astrophysics, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Lucey PG, Petro N, Hurley DM et al (2021) Volatile interactions with the lunar surface. Geochemistry (in press)

    Google Scholar 

  • Morlino G (2017) High-energy cosmic rays from supernovae. In: Alsabti AW, Murdin P (eds) Handbook of supernovae. Springer, Cham, pp 1711–1736

    Chapter  Google Scholar 

  • Pieters CM, Noble SK (2016) Space weathering on airless bodies. J Geophys Res: Planets 121(10):1865–1884

    Article  ADS  Google Scholar 

  • Reames DV (2021) Solar energetic particles, 2nd edn. Springer, Cham

    Book  Google Scholar 

  • Reedy RC, Arnold JR (1972) Interaction of solar and galactic cosmic-ray particles with the Moon. J Geophys Res 77(4):537–555

    Article  ADS  Google Scholar 

  • Saito Y, Yokota S, Tanaka T et al (2008) Solar wind proton reflection at the lunar surface: low energy ion measurement by MAP-PACE onboard SELENE (KAGUYA). Geophys Res Lett 35:L24205

    Article  ADS  Google Scholar 

  • Schwadron NA, Baker T, Blake B et al (2012) Lunar radiation environment and space weathering from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER). J Geophys Res: Planets 117:E00H13

    Article  Google Scholar 

  • Schwadron NA, Wilson JK, Looper MD et al (2016) Signatures of volatiles in the lunar proton albedo. Icarus 273:25–35

    Article  ADS  Google Scholar 

  • Schwadron NA, Cooper JF, Desai M et al (2017) Particle radiation sources, propagation and interactions in deep space, at Earth, the Moon, Mars, and beyond: examples of radiation interactions and effects. Space Sci Rev 212(3–4):1069–1106

    Article  ADS  Google Scholar 

  • Spence HE, Case AW, Golightly MJ et al (2010) CRaTER: the cosmic ray telescope for the effects of radiation experiment on the lunar reconnaissance orbiter mission. Space Sci Rev 150:243–284

    Article  ADS  Google Scholar 

  • Spence HE, Golightly MJ, Joyce CJ et al (2013) Relative contributions of galactic cosmic rays and lunar proton “albedo” to dose and dose rates near the Moon. Space Weather 11:643–650

    Article  ADS  Google Scholar 

  • Stanev T (2021) High energy cosmic rays, 3rd edn. Springer, Cham

    Book  Google Scholar 

  • Strong AW, Porter TA, Digel SW et al (2010) Global cosmic-ray-related luminosity and energy budget of the Milky Way. Astrophys J 722(1):L58–L63

    Article  ADS  Google Scholar 

  • Tsuji N, Uchiyama Y, Khangulyan D et al (2021) Systematic study of acceleration efficiency in young supernova remnants with nonthermal x-ray observations. Astrophys J 907(2):117

    Article  ADS  Google Scholar 

  • von Doetinchem P, Perez K, Aramaki T et al (2020) Cosmic-ray antinuclei as messengers of new physics: status and outlook for the new decade. J Cosmol Astropart Phys 8:035

    Article  Google Scholar 

  • Wimmer-Schweingruber RF, Zhang S, Hellweg CE et al (2019) The Lunar Lander Neutron & Dosimetry (LND) experiment on Chang’E4. Paper presented at the 50th lunar and planetary science conference (LPI contrib. no. 2132), The Woodlands, TX, 2019

    Google Scholar 

  • Xu X, Angelopoulos V, Wang Y et al (2017) The energetic particle environment of the lunar nearside: SEP influence. Astrophys J 849(2):151

    Article  ADS  Google Scholar 

  • Zhang S, Wimmer-Schweingruber RF, Yu J et al (2020) First measurements of the radiation dose on the lunar surface. Sci Adv 6(39):eaaz1334

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Losekamm .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Losekamm, M.J., Burmeister, S. (2023). Cosmic Rays in the Lunar Environment. In: Cudnik, B. (eds) Encyclopedia of Lunar Science. Springer, Cham. https://doi.org/10.1007/978-3-319-14541-9_176

Download citation

Publish with us

Policies and ethics