Skip to main content

Infrared Spectroscopy

  • Reference work entry
  • First Online:
Encyclopedia of Lunar Science
  • 22 Accesses

Synonyms

Thermal infrared spectroscopy; Vibrational spectroscopy

Definition/Description

Infrared spectroscopy deals with the interaction of infrared (IR) radiations with the planetary surfaces to measure the energy that is transmitted, reflected, and emitted from their surfaces. It characterizes/detects minerals based on the spectra generated following the interaction of IR radiations with the matter. To determine the mineral composition, it captures the fundamental vibrational modes of molecules in minerals within the spectral range 0.7–300 Î¼m and is divided into near-IR (0.7–2.5 Î¼m), mid-IR (2.5–25 Î¼m), and far-IR (25–300 Î¼m). As infrared radiations can travel through vacuum with the heat associated with the motion and kinetic energy of the molecules, they also provide information about the molecular structure.

Introduction

Every mineral has a unique chemical composition and crystalline structure with vibration motions of characteristic frequencies associated with the molecules and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bandfield JL, Ghent RR, Vasavada AR et al (2011) Lunar surface rock abundance and regolith fines temperatures derived from LRO diviner radiometer data. J Geophys Res Planets 116:E00H02

    Article  Google Scholar 

  • Bhattacharya S, Saran S, Dagar A et al (2013) Endogenic water on the moon associated with non-mare silicic volcanism: implications for hydrated lunar interior. Curr Sci 105:685–691

    Google Scholar 

  • Chauhan P, Kaur P, Bhattacharya S et al (2014) Detection of OH/H2O on the central peak of Jackson crater from moon mineralogical mapper (M3) data onboard Chandrayaan-1. Lunar Planet Sci Conf Texas 45:2072

    ADS  Google Scholar 

  • Clark RN (1979) Planetary reflectance measurements in the region of planetary thermal emission. Icarus 40:94–03

    Article  ADS  Google Scholar 

  • Clark RN (2009) Detection of adsorbed water and hydroxyl on the moon. Sci 326:562–564

    Article  ADS  Google Scholar 

  • Greenhagen BT, Lucey PG, Wyatt MB et al (2010) Global silicate mineralogy of the moon from the diviner lunar radiometer. Sci 329:1507–1509

    Article  ADS  Google Scholar 

  • Hunt GR, Salisbury JW (1969) A discussion on infared astronomy - Mid-infrared spectroscopic observations of the moon. Philos Trans R Soc Lon Ser A 264:109–139

    Google Scholar 

  • Klima R, Cahill J, Hagerty J (2013) Remote detection of magmatic water in Bullialdus crater on the moon. Nat Geo 6:737–741

    Article  ADS  Google Scholar 

  • Logan LM, Hunt GR (1970) Emission spectra of particulate silicates under simulated lunar conditions. J Geophys Res 75:6539–6548

    Article  ADS  Google Scholar 

  • McCord TB, Taylor LA, Combe JP et al (2011) Sources and physical processes responsible for OH/H2O in the lunar soil as revealed by the moon mineralogy mapper (M3). J Geophys Res 116:E00G05

    Article  Google Scholar 

  • Murcray FH (1965) The spectral dependence of lunar emissivity. J Geophys Res 70:4959

    Article  ADS  Google Scholar 

  • Nicodemus FE (1965) Directional reflectance and emissivity of an opaque surface. Appl Optic 4:767–773

    Article  ADS  Google Scholar 

  • Pieters CM, Goswami J, Clark R et al (2009) Character and spatial distribution of OH/H2O on the surface of the moon seen by M3 on Chandrayaan-1. Sci 326:568–572

    Article  ADS  Google Scholar 

  • Salisbury JW, et al (1991) Infrared (2.1-25 μm) spectra of minerals, The Johns Hopkins University Press, Baltimore, 267pp

    Google Scholar 

  • Salisbury JW, Walter LS (1989) Thermal infrared (2.5–13.5 μm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces. J Geophys Res 94(B7):9192–9202

    Article  ADS  Google Scholar 

  • Salisbury JW, Basu A, Fischer EM (1997) Thermal infrared spectra of lunar soils. Icarus 130:125–139

    Article  ADS  Google Scholar 

  • Sunshine JM, Farnham TL, Feaga LM et al (2009) Temporal and spatial variability of lunar hydration as observed by the deep impact spacecraft. Sci 326:565–568

    Article  ADS  Google Scholar 

  • Thomson JL, Salisbury JW (1993) The mid-infrared reflectance of mineral mixtures (7–14 μm). Remote Sens Environ 45:1–13

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chauhan, M., Chauhan, P. (2023). Infrared Spectroscopy. In: Cudnik, B. (eds) Encyclopedia of Lunar Science. Springer, Cham. https://doi.org/10.1007/978-3-319-14541-9_167

Download citation

Publish with us

Policies and ethics