Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 882 Accesses

Abstract

In quantum well solar cells, the eigenstates are bound in one direction and extended in the other two directions. The Empirical k·p Hamiltonian method can also be applied to this case. The envelopes of the four Γ-point Bloch functions contain a one-dimensional bound function in the direction of the growth of the quantum well layer multiplied by a two-dimensional plane wave in the plane perpendicular to the growth (horizontal). The envelope depends on the wave vector of the extended functions and is different for each Γ-point Bloch function. The dipole matrix of the optical transitions differs from the one used in preceding chapters in this book; the optical dipole operator previously used would be non-Hermitical when the initial and the final eigenfunctions are extended in some dimension. This is a very important aspect studied with detail in this chapter. The transitions caused by vertical photons conserve the horizontal wavevector; otherwise the matrix element is zero. An experimental quantum well solar cell has been modeled and its quantum efficiency has been simulated in reasonably good agreement with the measured curve. A clear description of the transitions produced is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Fourier transforms use different constants in the different fields of the science in which they are applied.

References

  1. Levine BF (1993) Quantum-well infrared photodetectors. J Appl Phys 74(8):R1–R81

    Article  Google Scholar 

  2. Barnham KWJ, Duggan G (1990) A new approach to high-efficiency multi-band-gap solar-cells. J Appl Phys 67(7):3490–3493

    Article  Google Scholar 

  3. Ekins-Daukes NJ, Barnham KWJ, Connolly JP, Roberts JS, Clark JC, Hill G, Mazzer M (1999) Strain-balanced GaAsP/InGaAs quantum well solar cells. Appl Phys Lett 75(26):4195–4197

    Article  Google Scholar 

  4. Okada Y, Shiotsuka N, Takeda T (2004) Potentially modulated multi-quantum wells for high-efficiency solar cell applications. Sol Energy Mater Sol Cells 85(2):143–152

    Article  Google Scholar 

  5. Kailuweit P, Kellenbenz R, Philipps SP, Guter W, Bett AW, Dimroth F (2010) Numerical simulation and modeling of GaAs quantum-well solar cells. J Appl Phys 107(6):064317. doi:10.1063/1.3354055

    Article  Google Scholar 

  6. Luque A, Marti A, Antolín E, Linares PG, Tobías I, Ramiro I, Hernandez E (2011) New Hamiltonian for a better understanding of the Quantum Dot Intermediate Band Solar Cells. Sol Energy Mater Solar Cells 95:2095–2101. doi:10.1016/j.solmat.2011.02.028

  7. Luque A, Mellor A, Antolin E, Linares PG, Ramiro I, Tobias I, Marti A (2012) Symmetry considerations in the empirical k.p Hamiltonian for the study of intermediate band solar cells. Sol Energy Mater Sol Cells 103:171–183

    Article  Google Scholar 

  8. Martí A, Cuadra L, Luque A (2000) Quantum dot intermediate band solar cell. Proceedings of the 28th IEEE photovoltaics specialists conference, pp 940–943. New York

    Google Scholar 

  9. Luque A, Martí A (1997) Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys Rev Lett 78(26):5014–5017

    Article  Google Scholar 

  10. Luque A, Antolín E, Linares PG, Ramiro I, Mellor A, Tobías I, Martí A (2013) Interband optical absorption in quantum well solar cells. Solar Energy Mater Solar Cells 112:20–26. doi:10.1016/j.solmat.2012.12.045

  11. Luque A, Marti A, Mellor A, Marron DF, Tobias I, Antolín E (2012) Absorption coefficient for the intraband transitions in quantum dot materials. Prog Photovoltaics Res Appl. doi:10.1002/pip.1250

  12. Linares PG, Marti A, Antolin E, Luque A (2011) III-V compound semiconductor screening for implementing quantum dot intermediate band solar cells. J Appl Phys 109:014313

    Article  Google Scholar 

  13. Messiah A (1960) Mécanique Quantique. Dunod, Paris

    Google Scholar 

  14. Luque A, Marti A, Mendes MJ, Tobias I (2008) Light absorption in the near field around surface plasmon polaritons. J Appl Phys 104(11):113118. doi:10.1063/1.3014035

    Article  Google Scholar 

  15. Harrison P (2000) Quantum wells wires and dots. Wiley, New York

    Google Scholar 

  16. Coon DD, Karunasiri RPG (1984) New mode of IR detection using quantum wells. Appl Phys Lett 45(6):649–651. doi:10.1063/1.95343

    Article  Google Scholar 

  17. Datta S (1989) Quantum phenomena. Molecular Series on Solid State Devices, vol 8. Addison Wesley, Reading (Mass)

    Google Scholar 

  18. Luque A, Marti A, Antolín E, Linares PG, Tobias I, Ramiro I (2011) Radiative thermal escape in intermediate band solar cells. AIP Adv 1:022125

    Article  Google Scholar 

  19. Fermi E (1932) Quantum theory of radiation. Rev Mod Phys 4(1):0087–0132

    Article  Google Scholar 

  20. Akahane K, Kawamura T, Okino K, Koyama H, Lan S, Okada Y, Kawabe M, Tosa M (1998) Highly packed InGaAs quantum dots on GaAs(311)B. Appl Phys Lett 73(23):3411–3413

    Article  Google Scholar 

  21. Tobías I, Luque A, Antolín E, Linares PG, Ramiro I, Hernández E, Martí A (2012) Realistic performance prediction in nanostructured solar cells. J Appl Phys 112:24518. doi:10.1063/1.4770464

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Luque .

Appendix

Appendix

In our calculations, the practical execution of the integral of Eq. (5.19) is made as follows:

The function inside the integral depends on the array of horizontal wavevectors (k x , k y ). We build an array containing in each term \(\left\{ {E_{hor,} \frac{{\left| {\left\langle {{{}^{qn}\zeta_{cb,S} }} \mathrel{\left | {\vphantom {{{}^{qn}\zeta_{cb,S} } {{}^{qn^{\prime}}\zeta_{hh,X} }}} \right. \kern-0pt} {{{}^{qn^{\prime}}\zeta_{hh,X} }} \right\rangle } \right|^{2} }}{{E_{tr} }}} \right\}\), both elements being functions of the horizontal wavevector. The integral, restricted to a domain D, must be a function of the energy so that we must sum only those terms of \(\frac{{\left| {\left\langle {{{}^{qn}\zeta_{cb,S} }} \mathrel{\left | {\vphantom {{{}^{qn}\zeta_{cb,S} } {{}^{qn^{\prime}}\zeta_{hh,X} }}} \right. \kern-0pt} {{{}^{qn^{\prime}}\zeta_{hh,X} }} \right\rangle } \right|^{2} }}{{E_{tr} }}\) such that their corresponding E hor is smaller than a given value of E hor , building in this way the function of E hor . This function, which rather smooth, is interpolated by a polynomial and its derivative is then taken for use in Eq. (5.18).

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Luque, A., Mellor, A.V. (2015). Interband Optical Absorption in Quantum Well Solar Cells. In: Photon Absorption Models in Nanostructured Semiconductor Solar Cells and Devices. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-14538-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14538-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14537-2

  • Online ISBN: 978-3-319-14538-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics