Skip to main content

Large-Eddy Simulation of Flow and Heat Transfer Around a Low-Mach Number Turbine Blade

  • Conference paper
  • First Online:
Direct and Large-Eddy Simulation IX

Part of the book series: ERCOFTAC Series ((ERCO,volume 20))

  • 5576 Accesses

Abstract

If flowines has been In the ideal Brayton cycle, an increase of the pressure ratio directly leads to an increase of the thermodynamic efficiency and subsequently to a decrease of the specific fuel consumption. Unfortunately, this pressure ratio growth causes a direct increase of the temperature ratio through the turbine stages, which may impact the design of turbine blades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balaras, E., Benocci, C., Piomelli, U.: Two-layer boundary conditions for large-eddy simulations. AIAA J. 34, 1111–1119 (1996)

    Article  MATH  Google Scholar 

  2. Duprat, C., Balarac, G., Métais, O., Congedo, P.M., Brugière, O.: A wall-layer model for large-eddy simulations of turbulent flows with/out pressure gradient. Phys. Fluids 22, 1–12 (2010)

    Google Scholar 

  3. Germano, M., Piomelli, U., Moin, P., Cabot, W.: A dynamic subgrid scale eddy viscosity model. Phys. Fluids 3, 1760–1765 (1991)

    Article  MATH  Google Scholar 

  4. Ladisch, H., Schultz, A., Bauer H.-J.: Heat transfer measurement on a turbine airfoil with pressure side separation. In: ASME Turbo Expo, Orlando, Florida, USA (2009)

    Google Scholar 

  5. Moureau, V., Domingo, P., Vervisch, L.: Design of a massively parallel CFD code for complex geometries. Comptes rendus de Mécanique 339, 141–148 (2011)

    Article  MATH  Google Scholar 

  6. Schlichting, H.: Boundary Layer Theory, 8th edn. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  7. Simpson, R.L.: A model for the backflow mean velocity profile. AIAA J. 21, 142 (1983)

    Article  Google Scholar 

  8. Spalart P.R., Jou W.H., Strelets M., Allmaras S.R.: Comment on the feasibility of LES for wings and on the hybrid RANS/LES approach. In: Advances in DNS/LES, 1st AFOSR International Conference on DNS/LES. Greyden Press, Columbus, pp. 4–8 (1997)

    Google Scholar 

Download references

Acknowledgments

Computational time was provided by GENCI (Grand Equipement National de Calcul Intensif) under the allocation x2012026880 at IDRIS (CNRS) and by PRACE in the MS-COMB project at TGCC (CEA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Maheu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Maheu, N., Moureau, V., Domingo, P. (2015). Large-Eddy Simulation of Flow and Heat Transfer Around a Low-Mach Number Turbine Blade. In: Fröhlich, J., Kuerten, H., Geurts, B., Armenio, V. (eds) Direct and Large-Eddy Simulation IX. ERCOFTAC Series, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-14448-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14448-1_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14447-4

  • Online ISBN: 978-3-319-14448-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics