Skip to main content

DNS of Canonical Turbulent Flows Using the Modal Discontinuous Galerkin Method

  • Conference paper
  • First Online:
Direct and Large-Eddy Simulation IX

Part of the book series: ERCOFTAC Series ((ERCO,volume 20))

  • 5600 Accesses

Abstract

The discontinuous Galerkin (DG) method is a particular class of finite element methods which was first introduced by Reed and Hill in 1973 [1] for the treatment of the neutron transport equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reed, W., Hill, T.: Triangular mesh methods for the neutron transport equation. Los Alamos Report LA-UR-73-479

    Google Scholar 

  2. Cockburn, B., Shu, C.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comp. 52(186), 411–435 (1989)

    MATH  MathSciNet  Google Scholar 

  3. Cockburn, B., Lin, S., Shu, C.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cockburn, B., Hou, S., Shu, C.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Compt. 54(190), 545–581 (1990)

    MATH  MathSciNet  Google Scholar 

  5. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131(2), 267–279 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bassi, F., Crivellini, A., Rebay, S., Savini, M.: Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k-\({\omega }\) turbulence model equations. Comput. Fluids 34(4–5), 507–540 (2005)

    Article  MATH  Google Scholar 

  7. Clercx, H., Bruneau, C.: The normal and oblique collision of a dipole with a no-slip boundary. Comput. Fluids 35(3), 245–279 (2006)

    Article  MATH  Google Scholar 

  8. Keetels, G., D’Ortona, U., Kramer, W., Clercx, H., Schneider, K., Van Heijst, G.: Fourier spectral and wavelet solvers for the incompressible Navier-Stokes equations with volume-penalization: convergence of a dipole-wall collision. J. Comput. Phys. 227(2), 919–945 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Coleman, G., Kim, J., Moser, R.: A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid Mech. 305, 159–184 (1995)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This research is funded by ONERA’s scientific board (DSG). We would like to thank Prof. G.N. Coleman for providing the reference data for the compressible channel flow, and Dr. Werner Kramer and Prof. Herman Clercx for the reference data for the dipole configuration. We are grateful to Dr. Emeric Martin for his valuable help regarding the parallel implementation issues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-B. Chapelier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chapelier, JB., De La Llave Plata, M., Renac, F., Lamballais, E. (2015). DNS of Canonical Turbulent Flows Using the Modal Discontinuous Galerkin Method. In: Fröhlich, J., Kuerten, H., Geurts, B., Armenio, V. (eds) Direct and Large-Eddy Simulation IX. ERCOFTAC Series, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-14448-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14448-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14447-4

  • Online ISBN: 978-3-319-14448-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics