Skip to main content

Abstract

The role of Progestogens is gaining more importance and clinical relevance in infertility practice. The use of progestogens for luteal phase support in infertility is not controversial. However there are debates and reviews on the type of progestogens to be used, the route of administration and duration of treatment once pregnancy is confirmed.

Progesterone is secreted primarily from the corpus luteum of the ovary during the second half of the menstrual cycle, and from the placenta during pregnancy. Inadequate or deficient progesterone production, commonly associated with luteal phase deficiency, has been claimed to be responsible for subfertility, implantation failures and recurrent miscarriages.

As more knowledge accumulates regarding immunomodulation and cytokine changes in early pregnancy, infertility specialists and research scientist are using this knowledge to improve implantation and pregnancy rates in infertility treatment particularly in IVF/ICSI cycles. The progestogens used in infertility practice have been shown to induce changes in a number of immunocompetent cells by different molecular and cellular mechanisms.

Progesterone use for endometrial ripening and implantation is also discussed with reference to the window of receptivity, cytokine changes and progesterone induced changes brought about by nitric oxide synthesis causing local vasodilation and uterine muscle quiescence.

This chapter attempts to connect the endocrine effects of progestogens with the immunomodulatory and cytokine changes associated with progesterone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen WM. The isolation of crystalline progestin. Science. 1935;82:89–93.

    Article  CAS  PubMed  Google Scholar 

  2. Jones GES. The luteal phase defect. Fertil Steril. 1976;27:351–6.

    CAS  PubMed  Google Scholar 

  3. Kolibianakis EM, Devroey P. The luteal phase after ovarian stimulation. Reprod Biomed Online. 2002;5 Suppl 1:26–35.

    Article  PubMed  Google Scholar 

  4. Kolibianks EM, Devroey P. Blastocyst culture: facts and fiction. Reprod Biomed Online. 2002;5:285–93.

    Article  Google Scholar 

  5. Martin J, Dominguez F, Avila S, et al. Human endometrial receptivity gene regulation. J Reprod Immunol. 2002;55:131–9.

    Article  CAS  PubMed  Google Scholar 

  6. Norwitz ER, Schust DJ, Fisher SJ. Implantation and the survival of early pregnancy. N Engl J Med. 2001;345:1400–8.

    Article  CAS  PubMed  Google Scholar 

  7. Tuckerman E, Laird SM, Steward R, et al. Markers of endometrial function in women with unexplained recurrent pregnancy loss: a comparison between morphologically normal and retarded endometrium. Hum Reprod. 2004;19:196–205.

    CAS  PubMed  Google Scholar 

  8. Bulletti C, de Ziegler D. Uterine contractility and embryo implantation. Curr Opin Obstet Gynecol. 2005;7:265–76.

    Article  Google Scholar 

  9. Fanchin R, Righini C, Olivennes F, et al. Uterine contractions at the time of embryo transfer alter pregnancy rates after in-vitro fertilization. Hum Reprod. 1998;13:1968–74.

    Article  CAS  PubMed  Google Scholar 

  10. Paulson RJ, Sauer MV, Lobo RA. Embryo implantation after human in vitro fertilization: importance of endometrial receptivity. Fertil Steril. 1990;53:870–4.

    CAS  PubMed  Google Scholar 

  11. Chaouat G, Menu E, Wegmann TG. Role of lymphokines of the CSF family and of TNF, gamma interferon and IL-2 in placental growth and fetal survival studied in two murine models of spontaneous resorptions. In: Chaouat G, Mowbray JF, editors. Cellular and molecular biology of the maternal-fetal relationship. Paris: INSERM/John Libbey Eurotext; 1991. p. 91.

    Google Scholar 

  12. Garcia-Lloret MI, Morrish DW, Wegmann TG, Honore L, Turner AR, Guilbert LJ. Demonstration of functional cytokine-placental interactions: CSF-1 and GM-CSF stimulate human cytotrophoblast differentiation and peptide hormone secretion. Exp Cell Res. 1994;214:46–54.

    Article  CAS  PubMed  Google Scholar 

  13. Ashkar AA, Di Santo JP, Croy AB. Interferon γ contributes to initiation of uterine vascular modification, decidual integrity, and uterine natural killer cell maturation during normal murine pregnancy. J Exp Med. 2000;192:259–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Hambartsoumian E. Endometrial leukemia inhibitory factor (LIF) as a possible cause of unexplained infertility and multiple failures of implantation. Am J Reprod Immunol. 1998;39:137–43.

    Article  CAS  PubMed  Google Scholar 

  15. Curry TE, Osteen KG. The matrix metalloproteinase system: changes, regulation, and impact throughout the ovarian and uterine reproductive cycle. Endocr Rev. 2003;24:428–65.

    Article  CAS  PubMed  Google Scholar 

  16. Aplin JD. Adhesion molecules in implantation. Rev Reprod. 1997;2:84–112.

    Article  CAS  PubMed  Google Scholar 

  17. Lin H, Mosmannn TR, Guilbert L, et al. Synthesis of T helper 2-type cytokines at the maternal-fetal interface. J Immunol. 1993;151:4562–73.

    CAS  PubMed  Google Scholar 

  18. Dosiou C, Giudice L. Neural killer cells in pregnancy and recurrent pregnancy loss: endocrine and immunologic perspectives. Endocr Rev. 2005;261:44–62.

    Article  Google Scholar 

  19. Alimohamadi S, Javadian P, Gharedaghi MH, Javadian N, Alinia H, Khazardoust S, Borna S, Hantoushzadeh S. Progesterone and threatened abortion: a randomized clinical trial on endocervical cytokine concentrations. J Reprod Immunol. 2013;98:52–60.

    Article  CAS  PubMed  Google Scholar 

  20. Aisemberg J, Vercelli CA, Bariani MV, Billi SC, Wolfson ML, Franchi AM. Progesterone is essential for protecting against LPS-induced pregnancy loss. LIF as a potential mediator of the anti-inflammatory effect of progesterone. PLoS One. 2013;8(2):e56161. doi:10.1371/journal.pone.0056161.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Raghupathy R, Al Mutawa E, Makhseed M, Azizieh F, Szekeres-Bartho J. Modulation of cytokine production by dydrogesterone in lymphocytes from women with recurrent miscarriage. BJOG. 2005;112(8):1096–101.

    Article  CAS  PubMed  Google Scholar 

  22. Hudić I, Szekeres-Bartho J, Fatušić Z, Stray-Pedersen B, Dizdarević-Hudić L, Latifagić A, Hotić N, Kamerić L, Mandžić A. Dydrogesterone supplementation in women with threatened preterm delivery–the impact on cytokine profile, hormone profile, and progesterone-induced blocking factor. J Reprod Immunol. 2011;92(1–2):103–7.

    PubMed  Google Scholar 

  23. Retamales I, Carrasco I, Troncoso JL, Las Heras J, Devoto L, Vega M. Morpho-functional study of human luteal cell subpopulations. Hum Reprod. 1994;9:591–6.

    CAS  PubMed  Google Scholar 

  24. Fraser HM, Lunn SF. Regulation and manipulation of angiogenesis in the primate corpus luteum. Reproduction. 2001;121:3554–62.

    Article  Google Scholar 

  25. Suzuki T, Sasano H, Takaya R, et al. Cyclic changes of vasculature and vascular phenotypes in normal human ovaries. Hum Reprod. 1988;13:953–9.

    Article  Google Scholar 

  26. Schams D, Berisha B. Regulation of corpus luteum function in cattle-an overview. Reprod Domest Anim. 2004;39:241–51.

    Article  CAS  PubMed  Google Scholar 

  27. Fatemi HM, Bourgain C, Donoso P, et al. Effect of oral administration of dydrogesterone versus vaginal administration of natural micronized progesterone on thee secretory transformation of endometrium and luteal endocrine profile in patients with premature ovarian failure: a proof of concept. Hum Reprod. 2007;22:1260–3.

    Article  CAS  PubMed  Google Scholar 

  28. Poenzias AS. Luteal phase support. Fertil Steril. 2002;77:318–23.

    Article  Google Scholar 

  29. McNatty KP, Smith DM, Makris A, et al. The microenvironment of the human antral follicle: interrelationships among the steroid levels in antral fluid, the population of granulosa cells, and the status of the oocyte in vivo and in vitro. J Clin Endocrinol Metab. 1979;49:851–60.

    Article  CAS  PubMed  Google Scholar 

  30. McNatty KP, Makris A, DeGrazia C, et al. The production of progesterone, androgens, and estrogens by granulosa cells, thecal tissue, and stromal tissue from human ovaries in vitro. J Clin Endocrinol Metab. 1979;49:687–99.

    Article  CAS  PubMed  Google Scholar 

  31. Norris RP, Freudzon M, Mehlmann LM, et al. Luteinizing hormone causes MAP minase-dependent phosphorylation and closure of connexin 43 gap junctions in mouse ovarian follicles: one of two paths to meiotic resumption. Development. 2008;135:3229–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Miller WL. Mechanizm of StAR’s regulation of mitochondrial cholesterol import. Mol Cell Endocrinol. 2007;265–6:46–50.

    Article  Google Scholar 

  33. Kiriakidou M, McAllister JM, Sugawara T, Strauss 3rd JF. Expression of steroidogenic acute regulatory protein (StAR) in the human ovary. J Clin Endocrinol Metab. 1986;81:4122–8.

    Google Scholar 

  34. Noyes RW, Hertig AT, Rock J. Dating the endometrial biopsy. Fertil Steril. 1950;1:3–10.

    Google Scholar 

  35. McNeely MJ, Soules MR. The diagnosis of luteal phase deficiency: a critical review. Fertil Steril. 1989;51:582–7.

    Google Scholar 

  36. Noyes RW, Haman JO. Accuracy of endometrial dating: correlation of endometrial dating with basal body temperature and menses. Fertil Steril. 1953;4:504–9.

    CAS  PubMed  Google Scholar 

  37. Peters AJ, Lloyd RP, Coulam CB. Prevalence of out-of-phase endometrial biopsy specimens. Am J Obstet Gynecol. 1992;166:1738–41.

    Article  CAS  PubMed  Google Scholar 

  38. Abraham GE, Maroulis GB, Marshall JR. Evaluation of ovulation and corpus luteum function using measurements of plasma progesterone. Obstet Gynecol. 1974;44:522–7.

    CAS  PubMed  Google Scholar 

  39. Huybayter ZR, Muasher SJ. Luteal supplementation in vitro fertilization: more questions than answers. Fertil Steril. 2008;89:749–58.

    Article  Google Scholar 

  40. Huytchinson-Williams KA, Lunefeld B, Diamond MP, et al. Human chorionic gonadotropin, estradiol, and progesterone profiles in conception and non-conception cycles in an in vitro fertilization program. Fertil Steril. 1989;52:441–5.

    Google Scholar 

  41. Check JH. Progesterone therapy versus follicle maturing drugs possible opposite effects on embryo implantation. Clin Exp Obstet Gynecol. 2002;29:5–10.

    CAS  PubMed  Google Scholar 

  42. Macklon NS, Fauser BC. Impact of ovarian hyper-stimulation on the luteal phase. J Reprod Fertil Suppl. 2000;55:101–8.

    CAS  PubMed  Google Scholar 

  43. Erdem A, Erdem M, Atmaca S, Guler I. Impact of luteal phase support on pregnancy rates in intrauterine insemination cycles; a prospective randomized study. Fertil Steril. 2009;91:2508–13.

    Article  PubMed  Google Scholar 

  44. Forman RG, Eychenne B, Nessmann C, et al. Assessing the early luteal phase in-vitro fertilization cycles: relationships between plasma steroids, endometrial receptors, and endometrial histology. Fertil Steril. 1989;51:310–6.

    CAS  PubMed  Google Scholar 

  45. Li TC, Tuckerman EM, Laird SM. Endometrial factors in recurrent miscarriage. Hum Reprod Update. 2002;1:43–52.

    Article  Google Scholar 

  46. Schweikert A, Rau T, Berkholz A, et al. Association of progesterone receptor polymorphism with recurrent abortions. Eur J Obstet Gynecol Reprod Biol. 2004;113:67–72.

    Article  CAS  PubMed  Google Scholar 

  47. Resenberg SM, Luciano AA, Riddick DH. The luteal phase defect: the relative frequency of, and encouraging response to, treatment with vaginal progesterone. Fertil Steril. 1980;34:17–20.

    Google Scholar 

  48. Hutchinson-Williams KA, DeCherney AH, Lavy G, et al. Luteal rescue in vitro fertilization-embryo transfer. Fertil Steril. 1990;53:495–500.

    CAS  PubMed  Google Scholar 

  49. Pritts EA, Atwood AK. Luteal phase support in infertility treatment: a meta-analysis of the randomized trials. Hum Reprod. 2002;17:2287–99.

    Article  CAS  PubMed  Google Scholar 

  50. Nosarka S, Kruger T, Siebert I, Grove D. Luteal phase support in in vitro fertilization: meta-analysis of randomized trials. Gynecol Obstet Invest. 2005;60:67–74.

    Article  PubMed  Google Scholar 

  51. van der Linden M, Buckingham K, Farquhar C, et al. Luteal phase support for assisted reproduction cycles. Cochrane Data base Syst rev 2011;5:CD009154.

    Google Scholar 

  52. Ludwig M, Diedrich K. Evaluation of an optimal luteal phase support protocol in IVF. Acta Obstet Gynecol Scand. 2001;80:452–66.

    Article  CAS  PubMed  Google Scholar 

  53. Kol S, Humaidan P, Itskovitz-Eldor J. GnRH agonist ovulation trigger and hCG-based, progesterone-free luteal support: a proof of concept study. Hum Reprod. 2011;26:2874–7.

    Article  CAS  PubMed  Google Scholar 

  54. Devroey P, Palermo G, Bourgain C, et al. Progesterone administration in patients with absent ovaries. Int J Fertil. 1989;34:188–93.

    CAS  PubMed  Google Scholar 

  55. Ludwig M, Schwartz P, Babahan B, et al. Luteal phase support using either Crinone 8% or Utrogest: results of a prospective randomized study. Eur J Obstet Gynecol Reprod Biol. 2002;103:48–52.

    Article  CAS  PubMed  Google Scholar 

  56. Polyzos NP, Cl M, Papanikolau EG, et al. Vaginal progesterone gel for luteal phase support in IVF/ICSI cycles: a meta-analysis. Fertil Steril. 2010;94:2083–7.

    Article  CAS  PubMed  Google Scholar 

  57. Silverberg KM, Vaughn TC, Hansard LJ, et al. Vaginal (Crinone 8%) gel vs. intramuscular pro progesterone in oil for luteal phase support in in vitro fertilization: a large prospective trial. Fertil Steril. 2012;97:344–8.

    Article  CAS  PubMed  Google Scholar 

  58. Gorkemli H, Ak D, Akyurek C, et al. Comparison of pregnancy outcomes, of progesterone or progesterone + estradiol for luteal phase support in IFSI-ET cycles. Gynecol Obstet Invest. 2004;58:140–4.

    Article  CAS  PubMed  Google Scholar 

  59. Kolibianakis EM, Venetis CA, Papanikolau EG, et al. Estrogen addition to progesterone for luteal phase support in cycles stimulated with GnRH analogues and gonadotrophins for IVF: a systematic review and meta-analysis. Hum Reprod. 2008;23:1346–54.

    Article  CAS  PubMed  Google Scholar 

  60. Pirard C, Donnez J, Loumaye E. GnRH agonist as luteal phase support in assisted reproduction technique cycles: results of a pilot study. Hum Reprod. 2006;21:1894–900.

    Article  CAS  PubMed  Google Scholar 

  61. Kykrou D, Kolibianakis EM, Fatemi HM, et al. Increased live birth rates with GnRH agonist addition for luteal support in ICSI/IVF cycles: a systematic review and meta-analysis. Hum Reprod Update. 2011;17:734–40.

    Article  Google Scholar 

  62. Queisser-Luft A. Dydrogesterone use during pregnancy: overview of birth defects reported since 1977. Early Hum Dev. 2009;85:375–7.

    Article  CAS  PubMed  Google Scholar 

  63. King RJ, Whitehead MI. Assessment of the potency of orally administered progestins in women. Fertil Steril. 1986;46:1062–6.

    CAS  PubMed  Google Scholar 

  64. Chakravarty BN, Shirazee HH, Dam P, et al. Oral dydrogesterone versus intravaginal micronised progesterone as luteal phase support in assisted reproductive technology (ART) cycles: results of a randomized study. J Steroid Biochem Mol Biol. 2005;97:416–20.

    Article  CAS  PubMed  Google Scholar 

  65. Iwase A, Ando H, Toda S, et al. Oral progestogen versus intramuscular progesterone for luteal support after assisted reproductive technology treatment: a prospective randomized study. Arch Gynecol Obstet. 2008;277:319–24.

    Article  CAS  PubMed  Google Scholar 

  66. Patki A, Pawar VC. Modulating fertility outcome in assisted reproductive technologies by the use of dydrogesterone. Gynecol Endocrinol. 2007;23 Suppl 1:68–72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ameet S. Patki M.D,D.N.B,F.C.P.S,F.R.C.O.G. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Patki, A.S., Sharma, A. (2015). Progestogens in Infertility Practice. In: Carp, H. (eds) Progestogens in Obstetrics and Gynecology. Springer, Cham. https://doi.org/10.1007/978-3-319-14385-9_3

Download citation

Publish with us

Policies and ethics