Skip to main content

Head- and Eye-Tracking Solutions for Autostereoscopic and Holographic 3D Displays

  • Reference work entry
  • First Online:
Handbook of Visual Display Technology
  • 322 Accesses

Abstract

Head- and eye-tracked 3D display systems provide glass-free 3D experience while offering a free movement of the observer within the tracking range. In either autostereoscopic or holographic 3D displays, eye-tracking systems are used for following left and right eye position of the observer in real time. Knowing the exact eye positions, the 3D display system provides the proper perspective views to the display user. For autostereoscopic displays these are left and right 2D stereo sub-images, whereas for holographic displays these are left and right holographic 3D reconstruction, respectively. For angular separation of the particular views, special optical light-steering devices are employed. Thus, a fast eye tracking combined with smooth light steering ensures a complete 3D visualization for the user at any time over a wide viewing range.

In this chapter, we first discuss general aspects of video-based eye tracking for their application in 3D displays and present implementations of real-time eye-tracking systems in autostereoscopic and holographic 3D displays. Then an implementation of an eye-tracking system is discussed in detail including the actual hardware and software solutions and achieved performance. Commercially available solutions for eye tracking are evaluated in terms of their specifications and suitability for tracked 3D displays and compared with our system. We then continue with a general description of the optical system required for providing the designated views of a 3D display. Finally, we conclude with a brief summary and offer a perspective on possible future developments of tracked 3D displays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

API:

Application programming interface

ASD:

Autostereoscopic display

CPU:

Central processing unit

DSP:

Digital signal processor

ET:

Eye tracking

EWOD:

Electrowetting on dielectrics

FD:

Face detection

FOV:

Field of view

FPGA:

Field-programmable gate array

HAL:

Hardware abstraction layer

IR:

Infrared

LVDS:

Low-voltage differential signaling

MC:

Master control

OEM:

Original equipment manufacturer

PC:

Personal computer

PCA:

Principal component analysis

PHY:

Physical layer of ethernet

RAM:

Random-access memory

ROI:

Region-of-interest

SDK:

Software development kit

SRIO:

Serial variant of rapidIO

SL:

Support layer

SVM:

Support vector machine

VW:

Viewing window

References

  • Beni G, Hackwood S, Jackel JL (1982) Continuous electrowetting effect. Appl Phys Lett 40:912–914

    Article  Google Scholar 

  • Berge B, Peseux J (2000) Variable focal lens controlled by an external voltage: an application of electrowetting. Eur Phys J E 3:159–163

    Article  Google Scholar 

  • Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698

    Article  Google Scholar 

  • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297

    MATH  Google Scholar 

  • Hoffman DM, Girshick AR, Akeley K, Banks MS (2008) Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. J Vis 8:1–30

    Article  Google Scholar 

  • Holliman NS (2004) Mapping perceived depth to regions of interest in stereoscopic images. In: Stereoscopic displays and virtual reality systems XI, vol 5291. SPIE, Bellingham, pp 117–128

    Chapter  Google Scholar 

  • Jolliffe I (2002) Principal component analysis. Springer, New York

    MATH  Google Scholar 

  • Kalman R (1960) A new approach to linear filtering and prediction problems. J Basic Eng Citeseer 82:35–45

    Article  Google Scholar 

  • Kuiper S, Hendriks BHW, Hayes RA, Feenstra BJ, Baken JME, Javidi B, Psaltis D (eds) (2005) Electrowetting-based optics. In: Optical information systems III, SPIE, vol 5908, 59080R

    Google Scholar 

  • Lyons M, Budynek J, Akamatsu S (1999) Automatic classification of single facial images. IEEE Trans Pattern Anal Mach Intell 21:1357–1362

    Article  Google Scholar 

  • McManamon PF, Bos PJ, Escuti MJ, Heikenfeld J, Serati S, Xie H, Watson EA (2009) A review of phased array steering for narrow-band electrooptical systems. Proc IEEE 97:1078–1096

    Article  Google Scholar 

  • Morimoto C, Koons D, Amir A, Flickner M (2000) Pupil detection and tracking using multiple light sources. Image Vis Comput 18:331–335

    Article  Google Scholar 

  • Reichelt S, Häussler R, Fütterer G, Leister N (2010) Depth cues in human visual perception and their realization in 3D displays. In: Javidi B, Son J-Y (eds) Three-dimensional imaging, visualization, and display 2010 and display technologies and applications for defense, security, and avionics IV, proceedings of SPIE, vol 7690, 76900B. doi:10.1117/12.850094

    Google Scholar 

  • Reichelt S, Häussler R, Leister N, Fütterer G, Stolle H, Schwerdtner A (2010) Holographic 3-D displays – electro-holography within the grasp of commercialization. In: Costa N, Cartaxo A (eds) Advances in lasers and electro optics. INTECH. http://sciyo.com/articles/show/title/holographic-3-d-displays-electro-holography-within-the-grasp-of-commercialization, pp 683–710

    Google Scholar 

  • Smith NR, Abeysinghe DC, Haus JW, Heikenfeld J (2006) Agile wide-angle beam steering with electrowetting microprisms. Opt Express OSA 14:6557–6563

    Article  Google Scholar 

  • Sobel I, Feldman G (1973) A 3x3 isotropic gradient operator for image processing. Presented at a talk at the Stanford Artificial Project in 1968. Unpublished but often cited, org. In: Duda R, Hart P (eds) Pattern classification and scene analysis. Wiley, New York, pp 271–272

    Google Scholar 

  • Stockley J, Serati S (2004) Advances in liquid crystal beam steering. In: Proceedings of SPIE, vol 5550, pp 32–39

    Google Scholar 

  • Stolle H, Olaya J-C, Buschbeck S, Sahm H, Schwerdtner A (2008) Technical solutions for a full-resolution autostereoscopic 2D/3D display technology. In: Stereoscopic displays and applications XIX, SPIE, vol 6803, 68030Q

    Google Scholar 

  • Valley P, Mathine DL, Dodge MR, Schwiegerling J, Peyman G, Peyghambarian N (2010) Tunable-focus flat liquid-crystal diffractive lens. Opt Lett OSA 35:336–338

    Article  Google Scholar 

  • Viola P, Jones M (2004) Robust real-time face detection. Int J Comput Vis 57:137–154

    Article  Google Scholar 

  • Zhai S (2003) What’s in the eyes for attentive input. Commun ACM 46:34–39

    Article  Google Scholar 

  • Zschau E, Missbach R, Schwerdtner A, Stolle H (2010) Generation, encoding, and presentation of content on holographic displays in real time. In: Three-dimensional imaging, visualization, and display 2010 and display technologies and applications for defense, security, and avionics IV, SPIE, vol 7690, 76900E

    Google Scholar 

Further Reading

  • Chen Y-S, Su C-H, Chen J-H, Chen C-S, Hung Y-P, Fuh C-S (2001) Video-based eye tracking for autostereoscopic displays. Opt Eng SPIE 40:2726–2734

    Article  Google Scholar 

  • Cristianini N (2000) An introduction to support vector machines and other kernel-based learning methods, 1st edn. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Davies ER (2005) Machine vision: theory, algorithms, practicalities, 3rd edn, Signal processing and its applications. Elsevier, Amsterdam

    Google Scholar 

  • Duchowski A (2007) Eye tracking methodology, theory and practice, 2nd edn. Springer, London

    MATH  Google Scholar 

  • Haro A, Flickner M, Essa I (2000) Detecting and tracking eyes by using their physiological properties, dynamics, and appearance. In: Proceedings of CVPR 2000, pp 1163–1168

    Google Scholar 

  • Hartley R, Zisserman A (2003) Multiple view geometry in computer vision. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Klette R, Schluns K, Koschan A (1998) Computer vision: three-dimensional data from images, 1st edn. Springer, Singapore

    MATH  Google Scholar 

  • Okano F, Javidi B (2001) Three-dimensional television, video, and display technologies. Springer, Berlin/Heidelberg

    Google Scholar 

  • Parker JR (1996) Algorithms for image processing and computer vision, 1st edn. Wiley, New York

    Google Scholar 

  • Surman P, Sexton I, Hopf K, Bates R, Lee W (2006) Head tracked 3D displays. In: Gunsel B, Jain A, Tekalp A, Sankur B (eds) Multimedia content representation, classification and security, vol 4105. Springer, Berlin/Heidelberg, pp 769–776

    Chapter  Google Scholar 

  • The Computer Vision Homepage. http://www.cs.cmu.edu/~cil/vision.html

  • The Face Detection Homepage. http://www.facedetection.com/

  • Yang M-H (2001) Face detection and gesture recognition for human-computer interaction, Kluwer international series in video computing. Springer, Berlin

    Book  MATH  Google Scholar 

  • Zhu Z, Ji Q (2005) Robust real-time eye detection and tracking under variable lighting conditions and various face orientations. Comput Vis Image Underst 98(1):124–154

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Zschau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Zschau, E., Reichelt, S. (2016). Head- and Eye-Tracking Solutions for Autostereoscopic and Holographic 3D Displays. In: Chen, J., Cranton, W., Fihn, M. (eds) Handbook of Visual Display Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-14346-0_114

Download citation

Publish with us

Policies and ethics