Skip to main content

Part of the book series: SpringerBriefs in Mathematical Physics ((BRIEFSMAPHY,volume 3))

  • 1021 Accesses

Abstract

Q-systems describe “extensions” of an infinite von Neumann factor \(N\), i.e., finite-index unital inclusions of \(N\) into another von Neumann algebra \(M\). They are (special cases of) Frobenius algebras in the C* tensor category of endomorphisms of \(N\). We review the relation between Q-systems, their modules and bimodules as structures in a tensor category on one side, and homomorphisms between von Neumann algebras on the other side. We then elaborate basic operations with Q-systems (various decompositions in the general case, and the centre, the full centre, and the braided product in braided categories), and illuminate their meaning in the von Neumann algebra setting. The main applications are in local quantum field theory, where Q-systems in the subcategory of DHR endomorphisms of a local algebra encode extensions \({\fancyscript{A}}(O)\subset {\fancyscript{B}}(O)\) of local nets. These applications, notably in conformal quantum field theories with boundaries, are briefly exposed, and are discussed in more detail in two original papers [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Bischoff, Y. Kawahigashi, R. Longo, Characterization of 2D rational local conformal nets and its boundary conditions: the maximal case. arXiv:1410.8848

  2. M. Bischoff, Y. Kawahigashi, R. Longo, K.-H. Rehren, Phase boundaries in algebraic conformal QFT. arXiv:1405.7863

  3. R. Longo, A duality for Hopf algebras and for subfactors. Commun. Math. Phys. 159, 133–150 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. V.F.R. Jones, Index for subfactors. Invent. Math. 72, 1–25 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. H. Kosaki, Extension of Jones’ theory on index to arbitrary factors. J. Funct. Anal. 66, 123–140 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Popa, Classification of Subfactors and Their Endomorphisms, CBMS Regional Conference Series in Mathematics, vol. 86 (American Mathematical Society, Providence, 1995)

    Google Scholar 

  7. S. Yamagami, C*-tensor categories and free product bimodules. J. Funct. Anal. 197, 323–346 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. P. Deligne, Catégories tannakiennes, in Grothendieck Festschrift, vol. II, ed. by P. Cartier, et al. (Birkhäuser, Basel, 1991), pp. 111–195

    Google Scholar 

  9. A. Joyal, R. Street, Braided tensor categories. Adv. Math. 102, 20–78 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. S. Mac Lane, Categories for the Working Mathematician, 2nd edn. (Springer, Berlin, 1998)

    MATH  Google Scholar 

  11. B. Bakalov, A. Kirillov Jr., Lectures on Tensor Categories and Modular Functors, University Lecture Series, vol. 21 (AMS, Providence, 2001)

    Google Scholar 

  12. P. Deligne, Catégories tensorielles. Mosc. Math. J. 2, 227–248 (2002)

    MATH  MathSciNet  Google Scholar 

  13. M. Müger, Galois theory for braided tensor categories and the modular closure. Adv. Math. 150, 151–201 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Kirillov Jr., V. Ostrik, On \(q\)-analog of McKay correspondence and ADE classification of \(sl(2)\) conformal field theories. Adv. Math. 171, 183–227 (2002)

    Google Scholar 

  15. V. Ostrik, Module categories, weak Hopf algebras and modular invariants. Transform. Groups 8, 177–206 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Müger, From subfactors to categories and topology I. Frobenius algebras in and Morita equivalence of tensor categories. J. Pure Appl. Algebra 180, 81–157 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Müger, From subfactors to categories and topology II. The quantum double of tensor categories and subfactors. J. Pure Appl. Algebra 180, 159–219 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Müger, Galois extensions of braided tensor categories and braided crossed G-categories. J. Algebra 277, 256–281 (2004)

    Google Scholar 

  19. P. Etingof, D. Nikshych, V. Ostrik, On fusion categories. Ann. Math. 162, 581–642 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. A. Davydov, M. Müger, D. Nikshych, V. Ostrik, The Witt group of non-degenerate braided fusion categories. arXiv:1009.2117

  21. J. Fuchs, I. Runkel, C. Schweigert, TFT construction of RCFT correlators I: partition functions. Nucl. Phys. B 646, 353–497 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. J. Fuchs, I. Runkel, C. Schweigert, TFT construction of RCFT correlators II. Nucl. Phys. B 678, 511–637 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. J. Fuchs, I. Runkel, C. Schweigert, TFT construction of RCFT correlators III. Nucl. Phys. B 694, 277–353 (2004)

    ADS  MATH  MathSciNet  Google Scholar 

  24. J. Fuchs, I. Runkel, C. Schweigert, TFT construction of RCFT correlators IV. Nucl. Phys. B 715, 539–638 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. S. Doplicher, R. Haag, J.E. Roberts, Local observables and particle statistics. I. Commun. Math. Phys. 23, 199–230 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  26. K. Fredenhagen, K.-H. Rehren, B. Schroer, Superselection sectors with braid group statistics and exchange algebras I. Commun. Math. Phys. 125, 201–226 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. R. Longo, K.-H. Rehren, Local fields in boundary CFT. Rev. Math. Phys. 16, 909–960 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. R. Longo, K.-H. Rehren, How to remove the boundary in CFT—an operator algebraic procedure. Commun. Math. Phys. 285, 1165–1182 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. S. Carpi, Y. Kawahigashi, R. Longo, How to add a boundary condition. Commun. Math. Phys. 322, 149–166 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. J. Fröhlich, J. Fuchs, I. Runkel, C. Schweigert, Correspondences of Ribbon categories. Ann. Math. 199, 192–329 (2006)

    MATH  Google Scholar 

  31. L. Kong, I. Runkel, Morita classes of algebras in modular tensor categories. Adv. Math. 219, 1548–1576 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. J. Fröhlich, J. Fuchs, I. Runkel, C. Schweigert, Kramers-Wannier duality from conformal defects. Phys. Rev. Lett. 93, 070601 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  33. J. Fröhlich, J. Fuchs, I. Runkel, C. Schweigert, Duality and defects in rational conformal field theory. Nucl. Phys. B 763, 354–430 (2007)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Bischoff .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Bischoff, M., Kawahigashi, Y., Longo, R., Rehren, KH. (2015). Introduction. In: Tensor Categories and Endomorphisms of von Neumann Algebras. SpringerBriefs in Mathematical Physics, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-14301-9_1

Download citation

Publish with us

Policies and ethics