Skip to main content

Role of Chaperone-Mediated Autophagy in Ageing and Neurodegeneration

  • Chapter
  • First Online:
Toxicity and Autophagy in Neurodegenerative Disorders

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 9))

  • 791 Accesses

Abstract

Depending on the mechanism and molecular players involved in the targeting of a substrate to the lysosome, autophagy can be divided in three different subtypes: Macroautophagy, Microautophagy and Chaperone-Mediated Autophagy (CMA).

In contrast to other forms of autophagy, in CMA, soluble cytosolic proteins can be targeted selectively for degradation in lysosomes. Selectivity in CMA is conferred by the presence of a pentapeptide motif in the amino acid sequence of the substrate proteins, biochemically related to KFERQ, that is recognized by the cytosolic chaperone Hsc70, which results in the targeting of substrates to the lysosome. Once at the lysosomal surface, the substrate–chaperone complex binds to the membrane, and, after unfolding the substrate, is translocated into the lumen by LAMP2A, that acts as the resident a CMA “receptor”.

CMA has been implicated both in the elimination of parts of the proteome damaged by stressors as well as in the selective turnover of substrates directly related with several proteinophaties, most notably in neurodegenerative diseases. In this chapter we will focus on the role of CMA in age-related neurodegeneration and how CMA often becomes the target of the toxic effect of neurodegeneration-related aberrant substrates. The mulfactorial nature of the CMA role in neurodegenerative disorders makes the careful analyses of the evidences gathered thus far instrumental for the understanding of CMA in the context of these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CMA:

Chaperone mediated autophagy

Hsc:

Heat shock cognate protein

LAMP2:

Lysosomal associated protein 2

KDa:

Kilodalton

HSP:

Heat shock protein

Bag:

Bcl 2 associate athanogene

Hop:

Hsc70 Hsp90 organizing protein

Hip:

Hsc70 interacting protein

GFAP:

Glial fibrillary acidic protein

EF1α:

Elongation factor 1 alpha

Lys:

Lysosomal

UPS:

Ubiquitin proteasome system

HD:

Huntinton’s disease

PD:

Parkinson’s disease

RNA:

Ribonucleic Acid

LRRK2:

Leucine rich repeat kinase 2

UCH-L1:

Ubiquitin C terminal hydrolase L1

IPS:

Induced pluripotent stem cells

MEF:

Myocyte enhancer factor

AD:

Alzheimer’s disease

RCAN1:

Regulator of calcineurin 1

HTT:

Huntingtin

References

  1. Okiyoneda T, Barriere H, Bagdany M, Rabeh WM, Du K, Hohfeld J, et al. Peripheral protein quality control removes unfolded CFTR from the plasma membrane. Science. 2010;329(5993):805–10.

    Article  CAS  PubMed  Google Scholar 

  2. Bejarano E, Girao H, Yuste A, Patel B, Marques C, Spray DC, et al. Autophagy modulates dynamics of connexins at the plasma membrane in a ubiquitin-dependent manner. Mol Biol Cell. 2012 ;23(11):2156–69.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Pedrozo Z, Torrealba N, Fernandez C, Gatica D, Toro B, Quiroga C, et al. Cardiomyocyte ryanodine receptor degradation by chaperone-mediated autophagy. Cardiovasc Res. 2013;98(2):277–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Shen S, Zhang P, Lovchik MA, Li Y, Tang L, Chen Z, et al. Cyclodepsipeptide toxin promotes the degradation of Hsp90 client proteins through chaperone-mediated autophagy. J Cell Biol. 2009;185(4):629–39.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6(4):463–77.

    Article  CAS  PubMed  Google Scholar 

  6. Chiang HL, Terlecky SR, Plant CP, Dice JF. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science. 1989;246(4928):382–5.

    Article  CAS  PubMed  Google Scholar 

  7. Massey AC, Zhang C, Cuervo AM. Chaperone-mediated autophagy in aging and disease. Curr Top Dev Biol. 2006;73:205–35.

    Article  CAS  PubMed  Google Scholar 

  8. Dice JF. Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem Sci. 1990;15(8):305–9.

    Article  CAS  PubMed  Google Scholar 

  9. Cuervo AM, Terlecky SR, Dice JF, Knecht E. Selective binding and uptake of ribonuclease A and glyceraldehyde-3-phosphate dehydrogenase by isolated rat liver lysosomes. J Biol Chem. 1994;269(42):26374–80.

    CAS  PubMed  Google Scholar 

  10. Dice JF. Chaperone-mediated autophagy. Autophagy. 2007;3(4):295–9.

    Article  CAS  PubMed  Google Scholar 

  11. Cuervo AM, Dice JF. A receptor for the selective uptake and degradation of proteins by lysosomes. Science. 1996;273(5274):501–3.

    Article  CAS  PubMed  Google Scholar 

  12. Gough NR, Hatem CL, Fambrough DM. The family of LAMP-2 proteins arises by alternative splicing from a single gene: characterization of the avian LAMP-2 gene and identification of mammalian homologs of LAMP-2b and LAMP-2c. DNA Cell Biol. 1995;14(10):863–7.

    Article  CAS  PubMed  Google Scholar 

  13. Cuervo AM, Knecht E, Terlecky SR, Dice JF. Activation of a selective pathway of lysosomal proteolysis in rat liver by prolonged starvation. Am J Physiol. 1995;269(5 Pt 1):C1200–8.

    CAS  PubMed  Google Scholar 

  14. Terlecky SR, Dice JF. Polypeptide import and degradation by isolated lysosomes. J Biol Chem. 1993;268(31):23490–5.

    CAS  PubMed  Google Scholar 

  15. Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AM. The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol Cell Biol. 2008;28(18):5747–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Kaushik S, Massey AC, Cuervo AM. Lysosome membrane lipid microdomains: novel regulators of chaperone-mediated autophagy. EMBO J. 2006;25(17):3921–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Cuervo AM, Dice JF. Regulation of lamp2a levels in the lysosomal membrane. Traffic. 2000;1(7):570–83.

    Article  CAS  PubMed  Google Scholar 

  18. Bandyopadhyay U, Sridhar S, Kaushik S, Kiffin R, Cuervo AM. Identification of regulators of chaperone-mediated autophagy. Mol Cell. 2010;39(4):535–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Agarraberes FA, Terlecky SR, Dice JF. An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation. J Cell Biol. 1997;137(4):825–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Kiffin R, Christian C, Knecht E, Cuervo AM. Activation of chaperone-mediated autophagy during oxidative stress. Mol Biol Cell. 2004;15(11):4829–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Cuervo AM, Dice JF, Knecht E. A population of rat liver lysosomes responsible for the selective uptake and degradation of cytosolic proteins. J Biol Chem. 1997;272(9):5606–15.

    Article  CAS  PubMed  Google Scholar 

  22. Ferreira JV, Fofo H, Bejarano E, Bento CF, Ramalho JS, Girao H, et al. STUB1/CHIP is required for HIF1A degradation by chaperone-mediated autophagy. Autophagy. 2013;9(9):1349–66.

    Article  CAS  PubMed  Google Scholar 

  23. Liu H, Wang P, Song W, Sun X. Degradation of regulator of calcineurin 1 (RCAN1) is mediated by both chaperone-mediated autophagy and ubiquitin proteasome pathways. FASEB J. 2009;23(10):3383–92.

    Article  CAS  PubMed  Google Scholar 

  24. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science. 2004;305(5688):1292–5.

    Article  CAS  PubMed  Google Scholar 

  25. Cuervo AM, Hu W, Lim B, Dice JF. IkappaB is a substrate for a selective pathway of lysosomal proteolysis. Mol Biol Cell. 1998;9(8):1995–2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Massey AC, Kaushik S, Sovak G, Kiffin R, Cuervo AM. Consequences of the selective blockage of chaperone-mediated autophagy. Proc Natl Acad Sci U S A. 2006;103(15):5805–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Wang Y, Singh R, Xiang Y, Czaja MJ. Macroautophagy and chaperone-mediated autophagy are required for hepatocyte resistance to oxidant stress. Hepatology. 2010;52(1):266–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Cuervo AM, Dice JF. Age-related decline in chaperone-mediated autophagy. J Biol Chem. 2000;275(40):31505–13.

    Article  CAS  PubMed  Google Scholar 

  29. Huang J, Xu J, Pang S, Bai B, Yan B. Age-related decrease of the LAMP-2 gene expression in human leukocytes. Clin Biochem. 2012;45(15):1229–32.

    Article  CAS  PubMed  Google Scholar 

  30. Kiffin R, Kaushik S, Zeng M, Bandyopadhyay U, Zhang C, Massey AC, et al. Altered dynamics of the lysosomal receptor for chaperone-mediated autophagy with age. J Cell Sci. 2007;120(Pt 5):782–91.

    Article  CAS  PubMed  Google Scholar 

  31. Rodriguez-Navarro JA, Kaushik S, Koga H, Dall’Armi C, Shui G, Wenk MR, et al. Inhibitory effect of dietary lipids on chaperone-mediated autophagy. Proc Natl Acad Sci U S A. 2012;109(12):E705–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Zhang C, Cuervo AM. Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat Med. 2008;14(9):959–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Marin C, Aguilar E. In vivo 6-OHDA-induced neurodegeneration and nigral autophagic markers expression. Neurochem Int. 2011;58(4):521–6.

    Article  CAS  PubMed  Google Scholar 

  34. Cao L, Chen R, Xu J, Lin Y, Wang R, Chi Z. Vitamin E inhibits activated chaperone-mediated autophagy in rats with status epilepticus. Neuroscience. 2009;161(1):73–7.

    Article  CAS  PubMed  Google Scholar 

  35. Dohi E, Tanaka S, Seki T, Miyagi T, Hide I, Takahashi T, et al. Hypoxic stress activates chaperone-mediated autophagy and modulates neuronal cell survival. Neurochem Int. 2012;60(4):431–42.

    Article  CAS  PubMed  Google Scholar 

  36. Metrailler S, Schorderet DF, Cottet S. Early apoptosis of rod photoreceptors in Rpe65(-/-) mice is associated with the upregulated expression of lysosomal-mediated autophagic genes. Exp Eye Res. 2012;96(1):70–81.

    Article  CAS  PubMed  Google Scholar 

  37. Rodriguez-Muela N, Koga H, Garcia-Ledo L, de la Villa P, de la Rosa EJ, Cuervo AM, et al. Balance between autophagic pathways preserves retinal homeostasis. Aging Cell. 2013;12(3):478–88.

    Article  CAS  PubMed  Google Scholar 

  38. Wong E, Cuervo AM. Integration of clearance mechanisms: the proteasome and autophagy. Cold Spring Harb Perspect Biol. 2010;2(12):a006734.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Park C, Cuervo AM. Selective autophagy: talking with the UPS. Cell Biochem Biophys. 2013;67(1):3–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Kaushik S, Massey AC, Mizushima N, Cuervo AM. Constitutive activation of chaperone-mediated autophagy in cells with impaired macroautophagy. Mol Biol Cell. 2008;19(5):2179–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Koga H, Martinez-Vicente M, Macian F, Verkhusha VV, Cuervo AM. A photoconvertible fluorescent reporter to track chaperone-mediated autophagy. Nat Commun. 2011;2:386.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Massey AC, Follenzi A, Kiffin R, Zhang C, Cuervo AM. Early cellular changes after blockage of chaperone-mediated autophagy. Autophagy. 2008;4(4):442–56.

    Article  CAS  PubMed  Google Scholar 

  43. Cuervo AM, Palmer A, Rivett AJ, Knecht E. Degradation of proteasomes by lysosomes in rat liver. Eur J Biochem. 1995;227(3):792–800.

    Article  CAS  PubMed  Google Scholar 

  44. Ravikumar B, Duden R, Rubinsztein DC. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet. 2002;11(9):1107–17.

    Article  CAS  PubMed  Google Scholar 

  45. Martinez-Vicente M, Talloczy Z, Wong E, Tang G, Koga H, Kaushik S, et al. Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat Neurosci. 2010;13(5):567–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Hipp MS, Patel CN, Bersuker K, Riley BE, Kaiser SE, Shaler TA, et al. Indirect inhibition of 26S proteasome activity in a cellular model of Huntington’s disease. J Cell Biol. 2012;196(5):573–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Koga H, Martinez-Vicente M, Arias E, Kaushik S, Sulzer D, Cuervo AM. Constitutive upregulation of chaperone-mediated autophagy in Huntington’s disease. J Neurosci. 2011;31(50):18492–505.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Wang Y, Martinez-Vicente M, Kruger U, Kaushik S, Wong E, Mandelkow EM, et al. Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum Mol Genet. 2009;18(21):4153–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Wong ES, Tan JM, Soong WE, Hussein K, Nukina N, Dawson VL, et al. Autophagy-mediated clearance of aggresomes is not a universal phenomenon. Hum Mol Genet. 2008;17(16):2570–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Wong E, Bejarano E, Rakshit M, Lee K, Hanson HH, Zaarur N, et al. Molecular determinants of selective clearance of protein inclusions by autophagy. Nat Commun. 2012;3:1240.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC. Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem. 2003;278(27):25009–13.

    Article  CAS  PubMed  Google Scholar 

  52. Cuervo AM, Wong E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 2014;24(1):92–104.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Alvarez-Erviti L, Seow Y, Schapira AH, Rodriguez-Oroz MC, Obeso JA, Cooper JM. Influence of microRNA deregulation on chaperone-mediated autophagy and alpha-synuclein pathology in Parkinson’s disease. Cell Death Dis. 2013;4:e545.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Pang S, Chen D, Zhang A, Qin X, Yan B. Genetic analysis of the LAMP-2 gene promoter in patients with sporadic Parkinson’s disease. Neurosci Lett. 2012;526(1):63–7.

    Article  CAS  PubMed  Google Scholar 

  55. Anguiano J, Garner TP, Mahalingam M, Das BC, Gavathiotis E, Cuervo AM. Chemical modulation of chaperone-mediated autophagy by retinoic acid derivatives. Nat Chem Biol. 2013;9(6):374–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Xilouri M, Brekk OR, Landeck N, Pitychoutis PM, Papasilekas T, Papadopoulou-Daifoti Z, et al. Boosting chaperone-mediated autophagy in vivo mitigates alpha-synuclein-induced neurodegeneration. Brain. 2013;136(Pt 7):2130–46.

    Article  PubMed  Google Scholar 

  57. Orenstein SJ, Kuo SH, Tasset I, Arias E, Koga H, Fernandez-Carasa I, et al. Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci. 2013;16(4):394–406.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Mak SK, McCormack AL, Manning-Bog AB, Cuervo AM, Di Monte DA. Lysosomal degradation of alpha-synuclein in vivo. J Biol Chem. 2010;285(18):13621–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Vogiatzi T, Xilouri M, Vekrellis K, Stefanis L. Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J Biol Chem. 2008;283(35):23542–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, Mazzulli J, Mosharov EV, et al. Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Invest. 2008;118(2):777–88.

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Kabuta T, Furuta A, Aoki S, Furuta K, Wada K. Aberrant interaction between Parkinson disease-associated mutant UCH-L1 and the lysosomal receptor for chaperone-mediated autophagy. J Biol Chem. 2008;283(35):23731–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Oueslati A, Fournier M, Lashuel HA. Role of post-translational modifications in modulating the structure, function and toxicity of alpha-synuclein: implications for Parkinson’s disease pathogenesis and therapies. Prog Brain Res. 2010;183:115–45.

    Article  CAS  PubMed  Google Scholar 

  63. Wu G, Wang X, Feng X, Zhang A, Li J, Gu K, et al. Altered expression of autophagic genes in the peripheral leukocytes of patients with sporadic Parkinson’s disease. Brain Res. 2011;1394:105–11.

    Article  CAS  PubMed  Google Scholar 

  64. Alvarez-Erviti L, Rodriguez-Oroz MC, Cooper JM, Caballero C, Ferrer I, Obeso JA, et al. Chaperone-mediated autophagy markers in Parkinson disease brains. Arch Neurol. 2010;67(12):1464–72.

    Article  PubMed  Google Scholar 

  65. Yang Q, She H, Gearing M, Colla E, Lee M, Shacka JJ, et al. Regulation of neuronal survival factor MEF2D by chaperone-mediated autophagy. Science. 2009;323(5910):124–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Mao Z, Bonni A, Xia F, Nadal-Vicens M, Greenberg ME. Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science. 1999;286(5440):785–90.

    Article  CAS  PubMed  Google Scholar 

  67. Gong X, Tang X, Wiedmann M, Wang X, Peng J, Zheng D, et al. Cdk5-mediated inhibition of the protective effects of transcription factor MEF2 in neurotoxicity-induced apoptosis. Neuron. 2003;38(1):33–46.

    Article  CAS  PubMed  Google Scholar 

  68. Gonzalez P, Alvarez V, Menendez M, Lahoz CH, Martinez C, Corao AI, et al. Myocyte enhancing factor-2A in Alzheimer’s disease: genetic analysis and association with MEF2A-polymorphisms. Neurosci Lett. 2007;411(1):47–51.

    Article  CAS  PubMed  Google Scholar 

  69. Smith PD, Mount MP, Shree R, Callaghan S, Slack RS, Anisman H, et al. Calpain-regulated p35/cdk5 plays a central role in dopaminergic neuron death through modulation of the transcription factor myocyte enhancer factor 2. J Neurosci. 2006;26(2):440–7.

    Article  CAS  PubMed  Google Scholar 

  70. Tang X, Wang X, Gong X, Tong M, Park D, Xia Z, et al. Cyclin-dependent kinase 5 mediates neurotoxin-induced degradation of the transcription factor myocyte enhancer factor 2. J Neurosci. 2005;25(19):4823–34.

    Article  CAS  PubMed  Google Scholar 

  71. Qi L, Zhang XD, Wu JC, Lin F, Wang J, DiFiglia M, et al. The role of chaperone-mediated autophagy in huntingtin degradation. PLoS ONE. 2012;7(10):e46834.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Thompson LM, Aiken CT, Kaltenbach LS, Agrawal N, Illes K, Khoshnan A, et al. IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome. J Cell Biol. 2009;187(7):1083–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Bauer PO, Goswami A, Wong HK, Okuno M, Kurosawa M, Yamada M, et al. Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein. Nat Biotechnol. 2010;28(3):256–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Girao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ferreira, J., Pereira, P., Girao, H. (2015). Role of Chaperone-Mediated Autophagy in Ageing and Neurodegeneration. In: Fuentes, J. (eds) Toxicity and Autophagy in Neurodegenerative Disorders. Current Topics in Neurotoxicity, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-13939-5_2

Download citation

Publish with us

Policies and ethics