Skip to main content

Some Techniques to Elaborate Plant–Microbe Interactions

  • Chapter
  • First Online:
Beneficial Plant-Bacterial Interactions
  • 1527 Accesses

Abstract

With the advent of recombinant DNA technology in the early 1970s and the subsequent development of a host of other technologies including DNA sequencing, the polymerase chain reaction (PCR), and DNA synthesis, it is possible to isolate, characterize, amplify, and sequence virtually any gene of interest. Moreover, the more recently developed techniques of transcriptomics, proteomics, and metabolomics may be employed to understand in considerable detail changes in plants that occur as a consequence of an interaction with PGPB as well as changes in PGPB that result from interactions with plants. The use of these newer techniques is enabling researchers to develop a more profound understanding of the detailed nature of plant–bacterial interactions, an important step in the development of new and more efficacious PGPB strains. Here, as a starting point, a number of those techniques are examined and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Ali S, Duan J, Charles TC, Glick BR (2014) A bioinformatics approach to the determination of bacterial genes involved in endophytic behavior. J Theor Biol 343:193–198

    Article  CAS  PubMed  Google Scholar 

  • Alphey L (1997) DNA sequencing: from experimental methods to bioinformatics. BIOS Scientific Publishers, New York

    Google Scholar 

  • Blazej RG, Kumaresan P, Mathies RA (2006) Microfabricated bioprocessor for integrated nanoliter-scale Sanger DNA sequencing. Proc Natl Acad Sci USA 103:7240–7245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chan EY (2005) Advances in sequencing technology. Mutat Res 573:13–40

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z, Wei Y-YC, Sung WWL, Glick BR, McConkey BJ (2009a) Proteomic analysis of the response of the plant growth-promoting bacterium Pseudomonas putida UW4 to nickel stress. Proteome Sci 7:18

    Article  PubMed Central  PubMed  Google Scholar 

  • Cheng Z, Duan J, Hao Y, McConkey BJ, Glick BR (2009b) Identification of bacterial proteins mediating the interaction between the plant growth-promoting bacterium Pseudomonas putida UW4 and Brassica napus (canola). Molec Plant-Microbe Interact 22:686–694

    Article  CAS  Google Scholar 

  • Cheng Z, McConkey BJ, Glick BR (2010a) Proteomic studies of plant-bacterial interactions. Soil Biol Biochem 42:1673–1684

    Article  CAS  Google Scholar 

  • Cheng Z, Woody OZ, Glick BR, McConkey BJ (2010b) Characterization of plant-bacterial interactions using proteomic approaches. Curr Proteomics 7:244–257

    Article  CAS  Google Scholar 

  • Duan J, Heikkila JJ, Glick BR (2010) Sequencing a bacterial genome: an overview. In: Vilas AM (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex Research Center, Badajoz, pp 1443–1451

    Google Scholar 

  • Duan J, Jiang W, Cheng Z, Heikkila JJ, Glick BR (2013) The complete genome sequence of the plant growth-promoting bacterium Pseudomonas putida UW4. PLoS ONE 8(3):e58640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Erlich HA, Gelfand D, Sninsky JJ (1991) Recent advances in the polymerase chain reaction. Science 252:1643–1651

    Article  CAS  PubMed  Google Scholar 

  • Fakhrai-Rad H, Pourmand N, Ronaghi M (2002) Pyrosequencing: an accurate detection platform for single nucleotide polymorphisms. Hum Muta 19:479–485

    Article  CAS  Google Scholar 

  • Green RE, Krause J, Ptak SE, Briggs AW, Ronan MT, Simons JF, Du L, Egholm M, Rothberg JM, Paunovic M, Pääbo S (2006) Analysis of one million base pairs of Neanderthal DNA. Nature 444:330–336

    Article  CAS  PubMed  Google Scholar 

  • Hoheisel JD (2006) Microarray technology: beyond transcript profiling and genotype analysis. Nat Rev Gene 7:200–210

    Article  CAS  Google Scholar 

  • Huber W, von Heydebreck A, Vingron M (2005) An introduction to low-level analysis methods of DNA microarray data. Bioconductor project working papers, Working paper 9. http://www.bepress.com/bioconductor/paper9

  • Itakura K, Rossi JJ, Wallace RB (1984) Synthesis and use of synthetic oligonucleotides. Annu Rev Biochem 53:323–356

    Article  CAS  PubMed  Google Scholar 

  • Jarvie T (2005) Next generation sequencing technologies. Drug Discov Today Technol 2:255–260

    Article  PubMed  Google Scholar 

  • Ju J, Kim DH, Bi L, Meng Q, Bai X, Li Z, Li X, Marma MS, Shi S, Wu J, Edwards JR, Romu A, Turro NJ (2006) Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators. Proc Natl Acad Sci USA 103:19635–19640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leamon JH, Braverman MS, Rothberg JM (2007) High-throughput, massively parallel DNA sequencing technology for the era of personalized medicine. Gene Ther Regul 3:15–31

    Article  CAS  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GK, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci USA 74:560–564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Metzker ML (2005) Emerging technologies in DNA sequencing. Genome Res 15:1767–1776

    Article  CAS  PubMed  Google Scholar 

  • O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed Central  PubMed  Google Scholar 

  • Patti GJ, Yanes O, Siuzdak G (2012) Metabolomics: the apogee of the omics trilogy. Nat Rev Molec Cell Biol 13:263–269

    Article  CAS  Google Scholar 

  • Mullis KB, Ferré F, Gibbs RA (eds) (1994) The polymerase chain reaction. Birkhäuser, Boston

    Google Scholar 

  • Rhee M, Burns MA (2006) Nanopore sequencing technology: research trends and applications. Trends Biotechnol 24:580–586

    Article  CAS  PubMed  Google Scholar 

  • Rothberg JM, Leamon JH (2008) The development and impact of 454 sequencing. Nat Biotechnol 26:1117–1124

    Article  CAS  PubMed  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf S, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    Article  CAS  PubMed  Google Scholar 

  • Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354

    Article  CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  CAS  PubMed  Google Scholar 

  • Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechno 26:1135–1145

    Article  CAS  Google Scholar 

  • Shendure J, Mitra RD, Varma C, Church GM (2004) Advanced sequencing technologies: methods and goals. Nat Rev Genet 5:335–344

    Article  CAS  PubMed  Google Scholar 

  • Shendure J, Porreca GJ, Reppas NB, Lin X, McCutcheon JP, Rosenbaum AM, Wang MD, Zhang K, Mitra RD, Church GM (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309:1728–1732

    Article  CAS  PubMed  Google Scholar 

  • Singh-Gasson S, Green RD, Yue Y, Nelson C, Blattner F, Sussman MR, Cerrina F (1999) Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nat Biotechno 17:974–978

    Article  CAS  Google Scholar 

  • Sørenson J, Nicolaisen MH, Ron E, Simonet P (2009) Molecular tools in rhizosphere microbiology—from single-cell to whole-community analysis. Plant Soil 321:483–512

    Article  Google Scholar 

  • van Vliet AHM (2010) Next generating sequencing of microbial transcriptomes: challenges and opportunities. FEMS Microbiol Lett 302:1–7

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard R. Glick .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Glick, B.R. (2015). Some Techniques to Elaborate Plant–Microbe Interactions. In: Beneficial Plant-Bacterial Interactions. Springer, Cham. https://doi.org/10.1007/978-3-319-13921-0_4

Download citation

Publish with us

Policies and ethics