Skip to main content

Recent Advances in the Chemical Synthesis of Lasso Molecular Switches

  • Conference paper
  • First Online:
Single Molecular Machines and Motors

Part of the book series: Advances in Atom and Single Molecule Machines ((AASMM))

Abstract

Interlocked and interwoven molecules are intriguing structures that can behave as molecular machines. Among them, the [1]rotaxane molecular architecture is unique, since it defines a lasso-type shape, that, if well designed, can be tightened or loosened depending on an external stimulus. This chapter describes an overview of the main strategies used to reach [1]rotaxanes to date and then focuses on the few examples of [1]rotaxanes reported in the literature that behave as mono-lasso or double-lasso molecular machines. Different motions are illustrated like the loosening–tightening of lassos or the controllable molecular “jump rope” movement which is specific to the double-lasso structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kay, E.R., Leigh, D.A., Zerbetto, F.: Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007)

    Article  CAS  Google Scholar 

  2. Balzani, V., Ceroni, P., Credi, A., Gomez-Lopez, M., Hamers, C., Stoddart, J.F., Wolf, R.: Controlled dethreading/rethreading of a scorpion-like pseudorotaxane and a related macrobicyclic self-complexing system. New J. Chem. 25, 25–31 (2001)

    Article  CAS  Google Scholar 

  3. Yamauchi, K., Miyawaki, A., Takashima, Y., Yamaguchi, H., Harada, A.: Switching from altro-α-cyclodextrin dimer to pseudo [1]rotaxane dimer through tumbling. Org. Lett. 12, 1284–1286 (2010)

    Article  CAS  Google Scholar 

  4. Yamauchi, K., Miyawaki, A., Takashima, Y., Yamaguchi, H., Harada, A.: A molecular reel: shuttling of a rotor by tumbling of a macrocycle. J. Org. Chem. 75, 1040–1046 (2010)

    Article  CAS  Google Scholar 

  5. Ashton, P.R., Ballardini, R., Balzani, V., Boyd, S.E., Credi, A., Gandolfi, M.T., Gomez-Lopez, M., Iqbal, S., Philp, D., Preece, J.A., Prodi, L., Ricketts, H.G., Stoddart, J.F., Tolley, M.S., Venturi, M., White, A.J.P., Williams, D.J.: Simple mechanical molecular and supramolecular machines: photochemical and electrochemical control of switching processes. Chem. Eur. J. 3, 152–170 (1997)

    Article  CAS  Google Scholar 

  6. Strutt, N.L., Zhang, H., Giesener, M.A., Lei, J., Stoddart, J.F.: A self-complexing and self-assembling pillar[5]arene. Chem. Commun. 48, 1647–1649 (2012)

    Article  CAS  Google Scholar 

  7. Legros V., Vanhaverbeke C., Souard F., Len C., Désiré J.: β-cyclodextrin-glycerol dimers: synthesis and NMR conformational analysis. Eur. J. Org. Chem. 2013, 2583–2590 (2013)

    Google Scholar 

  8. Liu, Y., Yang, Z.-X., Chen, Y.: Synthesis and self-assembly behaviors of the azobenzenyl modified β-cyclodextrins isomers. J. Org. Chem. 73, 5298–5304 (2008)

    Article  CAS  Google Scholar 

  9. Miyawaki, A., Kuad, P., Takashima, Y., Yamaguchi, H., Harada, A.: Molecular puzzle ring: pseudo[1]rotaxane from a flexible cyclodextrin derivative. J. Am. Chem. Soc. 130, 17062–17069 (2008)

    Article  CAS  Google Scholar 

  10. Hiratani, K., Kaneyama, M., Nagawa, Y., Koyama, E., Kanesato, M.: Synthesis of [1]rotaxane via covalent bond formation and its unique fluorescent response by energy transfer in the presence of lithium ion. J. Am. Chem. Soc. 126, 13568–13569 (2004)

    Article  CAS  Google Scholar 

  11. Franchi, P., Fani, M., Mezzina, E., Lucarini, M.: Increasing the persistency of stable free-radicals: synthesis and characterization of a nitroxide based [1]rotaxane. Org. Lett. 10, 1901–1904 (2008)

    Article  CAS  Google Scholar 

  12. Ma, X., Wang, Q., Tian, H.: Disparate orientation of [1]rotaxanes. Tetrahedron Lett. 48, 7112–7116 (2007)

    Article  CAS  Google Scholar 

  13. Zhu, L., Yan, H., Zhao, Y.: Cyclodextrin-based [1]rotaxanes on gold nanoparticles. Int. J. Mol. Sci. 13, 10132–10142 (2012)

    Article  CAS  Google Scholar 

  14. Tsuda, S., Terao, J., Kambe, N.: Synthesis of an organic-soluble π-conjugated [1]rotaxane. Chem. Lett. 38, 76–77 (2009)

    Article  CAS  Google Scholar 

  15. Rowan, S.J., Cantrill, S.J., Stoddart, J.F., White, A.J.P., Williams, D.J.: Toward daisy chain polymers: “Wittig exchange” of stoppers in [2]rotaxane monomers. Org. Lett. 2, 759–762 (2000)

    Article  CAS  Google Scholar 

  16. Xue, Z., Mayer, M.F.: Actuator prototype: capture and release of a self-entangled [1]rotaxane. J. Am. Chem. Soc. 132, 3274–3276 (2010)

    Article  CAS  Google Scholar 

  17. Gibson, H.W., Lee, S.-H., Engen, P.T., Lecavalier, P., Sze, J., Shen, Y.X., Bheda, M.: New triarylmethyl derivatives: “blocking groups” for rotaxanes and polyrotaxanes. J. Org. Chem. 58, 3748–3756 (1993)

    Article  CAS  Google Scholar 

  18. Jiménez, M.C., Dietrich-Buchecker, C., Sauvage, J.-P.: Towards synthetic molecular muscles: contraction and stretching of a linear rotaxane dimer. Angew. Chem. Int. Ed. 39, 3284–3287 (2000)

    Article  Google Scholar 

  19. Jimenez-Molero, M.C., Dietrich-Buchecker, C., Sauvage, J.-P.: Chemically induced contraction and stretching of a linear rotaxane dimer. Chem. Eur. J. 8, 1456–1466 (2002)

    Article  CAS  Google Scholar 

  20. Dietrich-Buchecker, C., Sauvage, J.-P., Kern, J.-M.: Templated synthesis of interlocked macrocyclic ligands: the catenands. J. Am. Chem. Soc. 106, 3043–3045 (1984)

    Article  CAS  Google Scholar 

  21. Onagi, H., Blake, C.J., Easton, C.J., Lincoln, S.F.: Installation of a ratchet tooth and pawl to restrict rotation in a cyclodextrin rotaxane. Chem. Eur. J. 9, 5978–5988 (2003)

    Article  CAS  Google Scholar 

  22. Okuno, E., Hiraoka, S., Shionoya, M.: A synthetic approach to a molecular crank mechanism: toward intramolecular motion transformation between rotation and translation. Dalton Trans. 39, 4107–4116 (2010)

    Article  CAS  Google Scholar 

  23. Ma, X., Qu, D., Ji, F., Wang, Q., Zhu, L., Xu, Y., Tian, H.: A light-driven [1]rotaxane via self-complementary and Suzuki-coupling capping. Chem. Commun. 1409–1411 (2007)

    Google Scholar 

  24. Gao, C., Ma, X., Zhang, Q., Wang, Q., Qu, D., Tian, H.: A light-powered stretch-contraction supramolecular system based on cobalt coordinated [1]rotaxane. Org. Biomol. Chem. 9, 1126–1132 (2011)

    Article  CAS  Google Scholar 

  25. Coutrot, F., Busseron, E.: A new glycorotaxane molecular machine based on an anilinium and a triazolium station. Chem. Eur. J. 14, 4784–4787 (2008)

    Article  CAS  Google Scholar 

  26. Chao, S., Romuald, C., Fournel-Marotte, K., Clavel, C., Coutrot, F.: A strategy utilizing a recyclable macrocycle transporter for the efficient synthesis of a triazolium-based [2]rotaxane. Angew. Chem. Int. Ed. 53, 6914–6919 (2014)

    Google Scholar 

  27. Li, H., Zhang, H., Zhang, Q., Zhang, Q.-W., Qu, D.: A switchable ferrocene-based [1]rotaxane with an electrochemical signal output. Org. Lett. 14, 5900–5903 (2012)

    Article  CAS  Google Scholar 

  28. Li, H., Zhang, J.-N., Zhou, W., Zhang, H., Zhang, Q., Qu, D., Tian, H.: Dual-mode operation of a bistable [1]rotaxane with a fluorescent signal. Org. Lett. 15, 3070–3073 (2013)

    Article  CAS  Google Scholar 

  29. Chatterjee, M.N., Kay, E.R., Leigh, D.A.: Beyond switches: ratcheting a particle energetically uphill with a compartmentalized molecular machine. J. Am. Chem. Soc. 128, 4058–4073 (2006)

    Article  CAS  Google Scholar 

  30. Alvarez-Pérez, M., Goldup, S.M., Leigh, D.A., Slawin, M.Z.: A chemically-driven molecular information ratchet. J. Am. Chem. Soc. 130, 1836–1838 (2008)

    Article  Google Scholar 

  31. Carlone, A., Goldup, S.M., Lebrasseur, N., Leigh, D.A., Wilson, A.: A three-compartment chemically-driven molecular information ratchet. J. Am. Chem. Soc. 134, 8321–8323 (2012)

    Article  CAS  Google Scholar 

  32. Kay, E.R., Leigh, D.A.: Beyond switches: rotaxane- and catenane-based synthetic molecular motors. Pure Appl. Chem. 80, 17–29 (2012)

    Google Scholar 

  33. Leigh, D.A., Zerbetto, F., Kay, E.R.: Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007)

    Article  Google Scholar 

  34. Busseron, E., Coutrot, F.: N-benzyltriazolium as both molecular station and barrier in [2]rotaxane molecular machines. J. Org. Chem. 78, 4099–4106 (2013)

    Article  CAS  Google Scholar 

  35. Clavel, C., Romuald, C., Brabet, E., Coutrot, F.: A pH-sensitive lasso-based rotaxane molecular switch. Chem. Eur. J. 19, 2982–2989 (2013)

    Article  CAS  Google Scholar 

  36. Coutrot, F., Busseron, E., Montero, J.-L.: A very efficient synthesis of a mannosyl orthoester [2]rotaxane and mannosidic [2]rotaxanes. Org. Lett. 10, 753–757 (2008)

    Article  CAS  Google Scholar 

  37. Clavel, C., Fournel-Marotte, K., Coutrot, F.: A pH sensitive peptide-containing lasso molecular switch. Molecules 18, 11553–11575 (2013)

    Article  CAS  Google Scholar 

  38. Romuald, C., Cazals, G., Enjalbal, C., Coutrot, F.: Straightforward synthesis of a double-lasso macrocycle from a nonsymmetrical [c2]daisy chain. Org. Lett. 15, 184–187 (2013)

    Article  CAS  Google Scholar 

  39. Romuald, C., Arda, A., Clavel, C., Jiménez-Barbero, J., Coutrot, F.: Tightening or loosening a pH-sensitive double-lasso molecular machine readily synthesized from an ends-activated [c2]daisy chain. Chem. Sci. 3, 1851–1857 (2012)

    Article  CAS  Google Scholar 

  40. Rotzler J., Mayor M. (2013) Molecular daisy chains. Chem. Soc. Rev. 42, 44–62

    Google Scholar 

  41. Coutrot, F., Romuald, C., Busseron, E.: A new dimannosyl[c2]daisy chain molecular machine. Org. Lett. 10, 3741–3744 (2008)

    Article  CAS  Google Scholar 

  42. Romuald, C., Busseron, E., Coutrot, F.: Very contracted to extended co-conformations with or without oscillations in two- and three-station [c2]daisy chains. J. Org. Chem. 75, 6516–6531 (2010)

    Article  CAS  Google Scholar 

  43. Romuald, C.: Des muscles moléculaires dans tous leurs états aux noeuds moléculaires à cavité modulable inédite. Thesis, University of Montpellier 2, Montpellier (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Coutrot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Coutrot, F. (2015). Recent Advances in the Chemical Synthesis of Lasso Molecular Switches. In: Joachim, C., Rapenne, G. (eds) Single Molecular Machines and Motors. Advances in Atom and Single Molecule Machines. Springer, Cham. https://doi.org/10.1007/978-3-319-13872-5_3

Download citation

Publish with us

Policies and ethics