Skip to main content

Extraction of Lignin from Biomass for Biofuel Production

  • Chapter
  • First Online:
Agricultural Biomass Based Potential Materials

Abstract

With the increasing population on planet Earth, the demand for the production of fuel and energy is increasing day by day. Second-generation biofuels are much more efficient as compared to first-generation biofuels as they use agricultural residues and waste products as biomass for the generation of biofuel. These biofuels need huge energy, time, cost, and potential for pretreatment processes. As the biomass is mainly composed of cellulose, lignin, and hemicelluloses, it needs to be treated for removal and extraction of hemicelluloses and lignin, respectively. Biofuel generation is dependent on the quality of biomass used. Different input biomasses for secondary fuel generation include wheat straw, barley straw, sugarcane bagasse, rapeseed residues, switchgrass, and lignocellulosic waste products. This chapter discusses second-generation biofuels, extraction methods of lignin from biomass, and advantages and limitations of lignin extraction from biomass. As soon as the oil refineries are replaced by biorefineries, societies will be benefited by switching from hydrocarbon feedstocks to renewable carbohydrates as a source of energy and biofuels. Finally, the chapter intends to look forward into the future research on biotechnological fuel development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achinivu EC, Howard RM, Li G, Gracz H, Henderson WA (2014) Lignin extraction from biomass with protic ionic liquids. Green Chem 16:1114–1119

    Article  CAS  Google Scholar 

  • Adler PR, Sanderson MA, Boateng AA, Weimer PJ, Jung H-JG (2006) Biomass yield and biofuel quality of switchgrass harvested in fall or spring. Am Soc Agron 98(6):1518–1525

    Article  CAS  Google Scholar 

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotech Adv 29(6):675–685

    Article  CAS  Google Scholar 

  • Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12:1493–1513

    Article  CAS  Google Scholar 

  • Alzate CAC, Toro OJS (2006) Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass. Energy 31(13):2447–2459

    Article  Google Scholar 

  • Antizar-Ladislao B, Turrion-Gomez JL (2008) Second-generation biofuels and local bioenergy systems. Biofuels Bioprod Biorefining 2(5):455–469

    Article  CAS  Google Scholar 

  • Azzam AM (1989) Pretreatment of cane bagasse with alkaline hydrogen peroxide for enzymatic hydrolysis of cellulose and ethanol fermentation. J Environ Sci Health Part B Pestic Food Contam Agric Wastes 24(4):421–433

    Article  Google Scholar 

  • Borjesson P, Mattiasson B (2008) Biogas as a resource-efficient vehicle fuel. Trends Biotechnol 26(1):7–13

    Article  PubMed  Google Scholar 

  • Buranov AU, Mazza G (2008) Lignin in straw of herbaceous crops. Ind Crop Prod 28(3):237–259

    Article  CAS  Google Scholar 

  • Carryquiry MA, Du X, Timilsina GR (2011) Second generation biofuels: economics and policies. Energy Policy 39(7):4222–4234

    Article  Google Scholar 

  • Chandel AK, da Silva SS, Carvalho W, Singh OV (2012) Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio-products. J Chem Technol Biotechnol 87(1):11–20

    Article  CAS  Google Scholar 

  • David K, Ragauskas AJ (2010) Switchgrass as an energy crop for biofuel production: a review of its ligno-cellulosic chemical properties. Energy Environ Sci 3:1182–1190

    Article  CAS  Google Scholar 

  • Davis SC, Parton WJ, Del Grosso SJ, Keough C, Marx E, Adler PE, DeLucia EH (2012) Impact of second-generation biofuel agriculture on greenhouse-gas emissions in the corn-growing regions of the US. Front Ecol Environ 10:69–74

    Article  Google Scholar 

  • Demirbas A (2011) Competitive liquid biofuels from biomass. Appl Energy 88(1):17–28

    Article  CAS  Google Scholar 

  • Dias MOS, da Cunha MP, Filho RM, Bonomi A, Jesus CDF, Rossell CEV (2011) Simulation of integrated first and second generation bioethanol production from sugarcane: comparison between different biomass pretreatment methods. J Ind Microbiol Biotechnol 38(8):955–966

    Article  CAS  PubMed  Google Scholar 

  • Dias MOS, Junqueira TL, Cavalett O, Cunha MP, Jesus CDF, Rossell CEV, Filho RM, Bonomi A (2012) Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash. Bioresour Technol 103(1):152–161

    Article  CAS  PubMed  Google Scholar 

  • Dien BS, Sarath G, Pedersen JF, Sattler SE, Chen H, Funnell-Harris DL, Nichols NN, Cotta MA (2009) Improved sugar conversion and ethanol yield for forage sorghum (Sorghum bicolor L. Moench) lines with reduced lignin contents. Bioenergy Res 2(3):153–164

    Article  Google Scholar 

  • Findlater KM, Kandlikar M (2011) Land use and second-generation biofuel feedstocks: the unconsidered impacts of Jatropha biodiesel in Rajasthan, India. Energy Policy 39(6):3404–3413

    Article  Google Scholar 

  • Fu D, Mazza G, Tamaki Y (2010) Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues. J Agric Food Chem 58(5):2915–2922

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Aparicio MP, Oliva JM, Manzanares P, Ballesteros M, Ballesteros I, Gonzalez A, Negro MJ (2011) Second-generation ethanol production from steam exploded barley straw by Kluyveromyces marxianus CECT 10875. Fuel 90(4):1624–1630

    Article  CAS  Google Scholar 

  • Gupta R, Mehta G, Khasa YP, Kuhad RC (2011) Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Biodegradation 22(4):797–804

    Article  CAS  PubMed  Google Scholar 

  • He X, Miao Y, Jiang X, Xu Z, Ouyang P (2010) Enhancing the enzymatic hydrolysis of corn stover by an integrated wet-milling and alkali pretreatment. Appl Biochem Biotechnol 160(8):2449–2457

    Article  CAS  PubMed  Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18

    Article  CAS  PubMed  Google Scholar 

  • Hicks JC (2011) Advances in C–O bond transformations in lignin-derived compounds for biofuels production. J Phys Chem Lett 2(18):2280–2287

    Article  CAS  Google Scholar 

  • Hou X-D, Smith TJ, Li N, Zong M-H (2012) Novel renewable ionic liquids as highly effective solvents for pretreatment of rice straw biomass by selective removal of lignin. Biotechnol Bioeng 109(10):2484–2493

    Article  CAS  PubMed  Google Scholar 

  • Kaparaju P, Serrano M, Thomsen AB, Kongjan P, Angelidaki I (2009) Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol 100(9):2562–2568

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35(5):377–391

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729

    Article  CAS  Google Scholar 

  • Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102(5):1368–1376

    Article  CAS  PubMed  Google Scholar 

  • Lomborg CJ, Thomsen MH, Jensen ES, Esbensen KH (2010) Power plant intake quantification of wheat straw composition for 2nd generation bioethanol optimization—a near infrared spectroscopy (NIRS) feasibility study. Bioresour Technol 101(4):1199–1205

    Article  CAS  PubMed  Google Scholar 

  • Mora-Pale M, Meli L, Doherty TV, Linhardt RJ, Dordick JS (2011) Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol Bioeng 108(6):1229–1245

    Article  CAS  PubMed  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686

    Article  CAS  PubMed  Google Scholar 

  • Mussgnug JH, Klassen V, Schluter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150(1):51–56

    Article  CAS  PubMed  Google Scholar 

  • Naik S, Goud VV, Rout PK, Jacobson K, Dalai AK (2010) Characterization of Canadian biomass for alternative renewable biofuel. Renew Energy 35(8):1624–1631

    Article  CAS  Google Scholar 

  • Osorio F, Torres JC (2009) Biogas purification from anaerobic digestion in a wastewater treatment plant for biofuel production. Renew Energy 34(10):2164–2171

    Article  CAS  Google Scholar 

  • Panagiotopoulos IA, Bakker RR, de Vrije T, Claassen PAM, Koukios EG (2013) Integration of first and second generation biofuels: fermentative hydrogen production from wheat grain and straw. Bioresour Technol 128:345–350

    Article  CAS  PubMed  Google Scholar 

  • Ragauskas AJ, Nagy M, Kim DH, Eckert CA, Hallett JP, Liotta CL (2006) From wood to fuels: integrating biofuels and pulp production. Ind Biotechnol 2(1):55–65

    Article  CAS  Google Scholar 

  • Rantanen L, Linnaila R, Aakko P, Harju T (2005) NExBTL—biodiesel fuel of the second generation. SAE Technical Paper

    Google Scholar 

  • Rass-Hansen J, Falsig H, Jorgensen B, Christensen CH (2007) Bioethanol: fuel or feedstock? J Chem Technol Biotechnol 82(4):329–333

    Article  CAS  Google Scholar 

  • Rollin JA, Zhu Z, Sathitsuksanoh N, Zhang Y-HP (2011) Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol Bioeng 108(1):22–30

    Article  CAS  PubMed  Google Scholar 

  • Sannigrahi P, Ragauskas AJ, Tuskan GA (2010) Poplar as a feedstock for biofuels: a review of compositional characteristics. Biofuels Bioprod Biorefining 4(2):209–226

    Article  CAS  Google Scholar 

  • Simmons BA, Loque D, Ralph J (2010) Advances in modifying lignin for enhanced biofuel production. Curr Opin Plant Biol 13(3):312–319

    Article  Google Scholar 

  • Sims REH, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101(6):1570–1580

    Article  CAS  PubMed  Google Scholar 

  • Sivakumar G, Vail DR, Xu J, Burner DM, Lay JO Jr, Ge X, Weathers PJ (2010) Bioethanol and biodiesel: alternative liquid fuels for future generations. Eng Life Sci 10(1):8–18

    Article  CAS  Google Scholar 

  • Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443

    Article  CAS  PubMed  Google Scholar 

  • Vanholme R, Morreel K, Darrah C, Oyarce P, Grabber H, Ralph J, Boerjan W (2012) Metabolic engineering of novel lignin in biomass crops. New Phytol 196(4):978–1000

    Article  CAS  PubMed  Google Scholar 

  • Walter A, Ensinas AV (2010) Combined production of second-generation biofuels and electricity from sugarcane residues. Energy 35(2):874–879

    Article  CAS  Google Scholar 

  • Wu H, Mora-Pale M, Miao J, Doherty TV, Linhardt RJ, Dordick JS (2011) Facile pretreatment of lignocellulosic biomass at high loadings in room temperature ionic liquids. Biotechnol Bioeng 108(12):2865–2875

    Article  CAS  PubMed  Google Scholar 

  • Wyman CE (1994) Ethanol from lignocellulosic biomass: technology, economics, and opportunities. Bioresour Technol 50(1):3–15

    Article  CAS  Google Scholar 

  • Xu J, Cheng JJ, Shivappa RRS, Burns JC (2010) Sodium hydroxide pretreatment of switchgrass for ethanol production. Energy Fuels 24(3):2113–2119

    Article  CAS  Google Scholar 

  • Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN Jr (2008) Plants to power: bioenergy to fuel the future. Trends Plant Sci 13(8):421–429

    Article  CAS  PubMed  Google Scholar 

  • Zabanitou A, Ioannidou O, Skoulou V (2008) Rapeseed residues utilization for energy and 2nd generation biofuels. Fuel 87(8/9):1492–1502

    Article  Google Scholar 

  • Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 2(3):51–68

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvina Gul Kazi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Imadi, S., Kazi, A. (2015). Extraction of Lignin from Biomass for Biofuel Production. In: Hakeem, K., Jawaid, M., Y. Alothman, O. (eds) Agricultural Biomass Based Potential Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-13847-3_18

Download citation

Publish with us

Policies and ethics