Skip to main content

High Temperature Cuprate Superconductors and Later Discoveries

  • Chapter
  • First Online:
Superconductivity

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 214))

  • 3560 Accesses

Abstract

The discovery of superconductivity at 30 K in an oxygen deficient La4Ba1Cu5O5(3−y) compound by Bednorz and Muller in 1986 lifted the despondency under which the superconductivity community was reeling since 1973 when highest T c = 23 K was recorded in sputtered Nb3Ge films and T c went no further. Chu raised T c of this compound to 40 K by applying pressure and Cava to 36 K after substituting Sr at the La-site. A breakthrough came in early 1987 when Wu and Chu announced a record T c = 93 K in Y1Ba2 Cu3 O7. T c thus crossed the 77 K mark first time. Soon Maeda discovered superconductivity at 110 K in another cuprate of the type Bi2Sr2Ca2Cu3O10 (Bi-2223 with 3 CuO2 layers). T c thus increases with the number of CuO2 layers but not beyond three layers. These layered curates have large anisotropy. The superconductivity is strong in the a-b planes (CuO2 layers) and weak along the c-axis. Critical parameters B c2 and J c too are high in the a-b plane and low along c-direction. Both the materials, Bi-2223 and YBCO are produced commercially and used for selected applications. The new improved 2G-YBCO wires are coated multilayered thin film conductors produced by employing sophisticated techniques and getting popularity among the community. Two more cuprates with still higher T c and analogous to Bi-system were discovered. A T c = 125 in Tl2Ca2Ba2Cu3O x (Ti-2223) and 135 K in Hg1Ba2Ca2Cu3O6+δ (Hg-1223) were reported. These materials were, however, not pursued for commercial production because of the toxicity involved. Superconductivity was also found in 2001 in MgB2 at 39 K, easily attainable with the use of a cryo-cooler. Besides, the material is quite cheap. MgB2 has two energy gaps and appears to be a BCS superconductor. It is being produced commercially now. The chapter also reviews all the discoveries that took place in 2008 onwards. Hosano reported superconductivity in iron based oxy-pnictides of the type LaFeAsO(1111) around 25 K. T c in excess of 50 K were reported in Sm and Nd based pnictides. The strategy adopted to enhance T c has been to dope the insulating La2O2 layer suitably whereby a charge, electron/hole is transferred to the Fe2As2 conduction layer. Thus a T c = 38 K was reported in a K-doped (Ba0.6K0.4) Fe2As2 compound. Very strange behavior of the appearance, disappearance and re-appearance of superconductivity with increasing pressure was announced in an iron-chalcogenide, Tl0.6Rb0.4Fe1.67Se2 hinting at the possibility of two different types of superconducting phases appearing at different pressures. A maximum T c = 48 K was obtained in this material at a pressure of 12.4 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.R. Gavaler, Appl. Phys. Lett. 23, 480 (1974)

    Article  ADS  Google Scholar 

  2. L.R. Tastardi, J.H. Wernick, W.A. Royer, Solid State Commun. 15, 1 (1974)

    Article  ADS  Google Scholar 

  3. J.G. Bednorz, K.A. Muller, Z. Phys. B: Condens. Matter 64, 189 (1986)

    Article  ADS  Google Scholar 

  4. D.C. Johnston, H. Prakash, W.H. Zachariasen, R. Viswanathan, Mater. Res. Bull. 8, 777 (1973)

    Article  Google Scholar 

  5. A.W. Sleight, J.L. Gillson, F.E. Bierstedt, Solid State Commun. 17, 27 (1975)

    Article  ADS  Google Scholar 

  6. C.W. Chu, P.H. Hor, R.L. Meng et al., Phys. Rev. Lett. 58, 405 (1987)

    Article  ADS  Google Scholar 

  7. R.J. Cava, R.B. van Dover, B. Batlogg, E.A. Rietman, Phys. Rev. Lett. 58, 408 (1987)

    Article  ADS  Google Scholar 

  8. R.P. Aloysius, Ph.D. thesis, Cochin University of Science and Technology, Cochin (2002)

    Google Scholar 

  9. M.K. Wu, J.R. Ashburn, C.J. Torng et al., Phys. Rev. Lett. 58, 908 (1987)

    Article  ADS  Google Scholar 

  10. R.G. Sharma, Y.S. Reddy, S.R. Jha, S.S. Dubey, Pramana-J. Phys. 30, L-81 (1988)

    Google Scholar 

  11. S.R. Jha, Y.S. Reddy, D.K. Suri, K.D. Kundra, R.G. Sharma, D. Kumar, Pramana-J. Phys. 32, 277 (1989)

    Google Scholar 

  12. A. Pandey, R. Rajput, B. Sarkar, Y.S. Reddy, R.G. Sharma, Physica C256, 335 (1996)

    ADS  Google Scholar 

  13. A. Pandey, Y.S. Reddy, R.G. Sharma, J. Mater. Sci. 32, 3701 (1997)

    Article  ADS  Google Scholar 

  14. R.G. Sharma, S. Lahiry, A. Pandey, D. Bhattacharya, Bull. Mater. Sci. 22, 265 (1999)

    Article  Google Scholar 

  15. R.G. Sharma, Y.S. Reddy, S.R. Jha, Rev. Solid State Sci. 2, 409 (1988)

    Google Scholar 

  16. P. Chaudhuri, R.H. Koch, R.B. Laibowitz et al., Phys. Rev. Lett. 58, 2684 (1987)

    Article  ADS  Google Scholar 

  17. T.R. Dinger, T.K. Worthington, W.J. Gallagher, R.L. Sandstorm, Phys. Rev. Lett. 58, 2687 (1987)

    Article  ADS  Google Scholar 

  18. H. Maeda, Y. Tanaka, M. Fukutomi, T. Asano, Jpn. J. Appl. Phys. 27, L665 (1987)

    Google Scholar 

  19. M. Takano, J. Takada, K. Oda et al., Jpn. J. Appl. Phys. 27, L1652 (1988)

    Article  ADS  Google Scholar 

  20. B. Sarkar, Y.S. Reddy, R.G. Sharma, Mater. Res. Bull. 28, 629 (1993)

    Article  Google Scholar 

  21. S.R. Shukla, D.K. Pandya, N. Kumar, S.K. Sharma, R.G. Sharma, Physica C219, 483 (1994)

    ADS  Google Scholar 

  22. S.R. Shukla, Y.S. Reddy, N. Kumar, S.K. Sharma, R.G. Sharma, Pramana-J. Phys. 41, 285 (1993)

    Article  ADS  Google Scholar 

  23. H. Maeda, K. Innoue, T. Kiyoshi, T. Asano et al., Phys. B 216, 141 (1996)

    Article  ADS  Google Scholar 

  24. M. Tachiki, S. Takahashi, Solid State Commun. 70, 291 (1989)

    Article  ADS  Google Scholar 

  25. K. Kadowaki, in Electronic Properties and Mechanism of High T c Superconductors, ed. by T. Oguchi, K. Kadowaki, T. Sasaki (North-Holland, Amsterdam, 1992), p. 209

    Google Scholar 

  26. M. Kikuchi, N. Ayai, T. Ishida et al., SEI Tech. Rev. 66, 73 (2008)

    Google Scholar 

  27. Z.Z. Sheng, A.M. Hermann, Nature 332, 55 (1988)

    Article  ADS  Google Scholar 

  28. Z.Z. Sheng, A.M. Hermann, Nature 332, 138 (1988)

    Article  ADS  Google Scholar 

  29. S.S.P. Parkin, V.Y. Lee, E.M. Engler et al., Phys. Rev. Lett. 60, 2539 (1988)

    Article  ADS  Google Scholar 

  30. S.N. Putillin, E.V. Antipov, O. Chmaissem, M. Marezio, Nature 362, 226 (1993)

    Article  ADS  Google Scholar 

  31. A. Schilling, M. Cantoni, J.D. Guo, H.R. Ott, Nature 363, 56 (1993)

    Google Scholar 

  32. C.W. Chu, L. Gao, F. Chen et al., Nature 365, 323 (1993)

    Article  ADS  Google Scholar 

  33. L. Gao, Y.Y. Xue, F. Chen et al., Phys. Rev. B50, 4260 (1994)

    Article  ADS  Google Scholar 

  34. E.V. Antipov, A.M. Abakumav, S.N. Putillin, Supercond. Sci. Technol. 15, R-31 (2002)

    Google Scholar 

  35. J. Nagamatsu, N. Nakagawa, T. Muranaka et al., Nature 410, 63 (2001)

    Article  ADS  Google Scholar 

  36. R. Nagarajan, C. Mazumdar, J. Hossain et al., Phys. Rev. Lett. 72, 274 (1994)

    Article  ADS  Google Scholar 

  37. R. Cava, H. Takagi, H.W. Zandbergen et al., Nature 367, 252 (1994)

    Article  ADS  Google Scholar 

  38. H.J. Choi, D. Roundy, H. Sun, M.L. Cohen, Nature 418, 758 (2002)

    Article  ADS  Google Scholar 

  39. R.S. Gonelli, A. Calzolari, D. Deghero et al., Phys. Rev. Lett. 87, 097001 (2001)

    Article  ADS  Google Scholar 

  40. C. Buzea, T. Yamashita, Supercond. Sci. Technol. 14, R 115 (2001)

    Google Scholar 

  41. K. Vinod, N. Verghese, U. Syamaprasad, Supercond. Sci. Technol. 20, R31 (2007)

    Article  ADS  Google Scholar 

  42. K. Vinod, R.G. Abhilash Kumar, U. Syamaprasad, Supercond. Sci. Technol. 20, R1 (2007)

    Google Scholar 

  43. J. Kapinski, S.M. Kazakov, J. Jun et al., Phys. C (Supercond.) 385, 42 (2003)

    Article  ADS  Google Scholar 

  44. K. Komori, K. Kawagishi, Y. Takano et al., Appl. Phys. Lett. 82, 1047 (2002)

    Article  ADS  Google Scholar 

  45. V. Ferrando, P. Orgiani, A.V. Pogrebnyakov et al., Appl. Phys. Lett. 87, 252509 (2005)

    Article  ADS  Google Scholar 

  46. G. Glasso, A. Malagoli, C. Ferdeghini et al., Cond-Mat/0103563

    Google Scholar 

  47. H. Kumakura, A. Matsumoto, H. Fuji, K. Togano, Appl. Phys. Lett. 79, 2435 (2001)

    Google Scholar 

  48. H. Fang, P.T. Putman, S. Padmanabhan et al., Supercond. Sci. Technol. 17, 717 (2004)

    Article  ADS  Google Scholar 

  49. M.D. Sumption, M. Bhatia, X. Wu et al., Supercond. Sci. Technol. 18, 730 (2005)

    Article  ADS  Google Scholar 

  50. Y. Elstev, K. Nakao, S. Lee et al., Phys. Rev. B 66, 180504 (2002)

    Article  ADS  Google Scholar 

  51. S.L. Bud’ko, G. Labertot, C. Petrovic, et al., Phys. Rev. Lett. 86, 1877 (2001)

    Google Scholar 

  52. B. Lorenz, R.L. Meng, C.W. Chu, Phys. Rev. B 64, 012507 (2001)

    Article  ADS  Google Scholar 

  53. S. Patnaik, L.D. Cooley, A Gurevich, et al., Supercond. Sci. Technol. 14, 315 (2001)

    Google Scholar 

  54. V. Braccini, A. Gurevich, J.E. Giencke et al., Phys. Rev. B 71, 012504 (2005)

    Article  ADS  Google Scholar 

  55. Y. Kamihara, H. Hiramatsu, M. Hirano et al., J. Am. Chem. Soc. 128, 10012 (2008)

    Article  Google Scholar 

  56. Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008)

    Article  Google Scholar 

  57. J. Jaroszynski, C. Scott, F. Riggs et al., Phys. Rev. B 78, 064511 (2008)

    Article  ADS  Google Scholar 

  58. P.M. Aswathy, J.B. Anuja, P.M. Sarun, U. Syamaprasad, Supercond. Sci. Technol. 23, 073001 (2010)

    Article  ADS  Google Scholar 

  59. F. Kametani, P. Li, D. Abrrimov et al., Appl. Phys. Lett. 95, 142502 (2009)

    Article  ADS  Google Scholar 

  60. M. Rotter, M. Tegel, D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008)

    Article  ADS  Google Scholar 

  61. F.C. Hsu, J.U. Luo, K.W. Yeh et al., Proc. Natl. Acad. Sci. U.S.A. 105, 14262 (2008)

    Article  ADS  Google Scholar 

  62. J. Guo, S. Jin, G. Wang et al., Phys. Rev. B 82, 180520(R) (2010)

    Article  ADS  Google Scholar 

  63. L. Sun, X.J. Chen, J. Guo et al., Nature 483, 67 (2012)

    Google Scholar 

  64. H.Q. Yuan, F.M. Groche, M. Deppe et al., Science 302, 2104 (2003)

    Article  ADS  Google Scholar 

  65. T. Okuhata, T. Nagai, H. Taniguchi et al., J. Phys. Soc. Jpn. 76(Suppl. A), 188 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Sharma .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sharma, R.G. (2015). High Temperature Cuprate Superconductors and Later Discoveries. In: Superconductivity. Springer Series in Materials Science, vol 214. Springer, Cham. https://doi.org/10.1007/978-3-319-13713-1_4

Download citation

Publish with us

Policies and ethics