Skip to main content

Oxidative Stress in Noise-Induced Hearing Loss

  • Chapter
Free Radicals in ENT Pathology

Abstract

In this review, we describe recent investigations on the relationship between oxidative stress and noise-induced hearing loss (NIHL). Mechanisms of NIHL will be discussed in terms of the formation of free radicals and pathways to cell pathology in the inner ear leading to NIHL, the clinically interesting post-exposure continuation of free radical formation and oxidative stress, and the opportunities provided for post-exposure treatment. The role of genetic factors influencing oxidative stress and NIHL is discussed. Finally, we introduce and discuss the “physiological cell signaling function of ROS” and the concept of “programmed necrosis, necroptosis,” and how these factors may dictate new strategies of translational research and provide promise for direct therapeutic treatment of NIHL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akaike T, Nishida M, Fujii S (2013) Regulation of redox signalling by an electrophilic cyclic nucleotide. J Biochem 153(2):131–138

    CAS  PubMed  Google Scholar 

  • Arteel GE, Briviba K, Sies H (1999) Protection against peroxynitrite. FEBS Lett 445(2–3):226–230

    CAS  PubMed  Google Scholar 

  • Basner M, Babisch W, Davis A, Brink M, Clark C, Janssen S, Stansfeld S (2013) Auditory and non-auditory effects of noise on health. Lancet 383(9925):1325–1332

    PubMed Central  PubMed  Google Scholar 

  • Bedard K, Krause K (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    CAS  PubMed  Google Scholar 

  • Borg E, Canlon B, Engstrom B (1995) Noise-induced hearing loss. Literature review and experiments in rabbits. Morphological and electrophysiological features, exposure parameters and temporal factors, variability and interactions. Scand Audiol Suppl 40:1–147

    CAS  PubMed  Google Scholar 

  • Burgoyne JR, Madhani M, Cuello F, Charles RL, Brennan JP, Schroder E, Browning DD, Eaton P (2007) Cysteine redox sensor in PKGIa enables oxidant-induced activation. Science 317:1393–1397

    CAS  PubMed  Google Scholar 

  • Campbell K, Claussen A, Meech R, Verhulst S, Fox D, Hughes L (2011) d-Methionine (d-met) significantly rescues noise-induced hearing loss: timing studies. Hear Res 282:138–144

    CAS  PubMed  Google Scholar 

  • Carlsson PI, Van Laer L, Borg E, Bondeson ML, Thys M, Fransen E, Van Camp G (2005) The influence of genetic variation in oxidative stress genes on human noise susceptibility. Hear Res 202(1–2):87–96

    CAS  PubMed  Google Scholar 

  • Chae HZ, Kim HJ, Kang SW, Rhee SG (1999) Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin. Diabetes Res Clin Pract 45:101–112

    CAS  PubMed  Google Scholar 

  • Chae HZ, Oubrahim H, Park JW, Rhee SG, Chock PB (2012) Protein glutathionylation in the regulation of peroxiredoxins: a family of thiol-specific peroxidases that function as antioxidants, molecular chaperones, and signal modulators. Antioxid Redox Signal 16:506–523

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen FQ, Zheng HW, Schacht J, Sha SH (2013) Mitochondrial peroxiredoxin 3 regulates sensory cell survival in the cochlea. PLoS One 8(4):e61999

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FK (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137:1112–1123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cho Y, McQuade T, Zhang H, Zhang J, Chan FK (2011) RIP1-dependent and independent effects of necrostatin-1 in necrosis and T cell activation. PLoS One 6(8):e23209

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choi CH, Chen K, Du X, Floyd RA, Kopke RD (2011) Effects of delayed and extended antioxidant treatment on acute acoustic trauma. Free Radic Res 45(10):1162–1172

    CAS  PubMed  Google Scholar 

  • Coling DE, Yu KC, Somand D, Satar B, Bai U, Huang TT, Seidman MD, Epstein CJ, Mhatre AN, Lalwani AK (2003) Effect of SOD1 overexpression on age- and noise-related hearing loss. Free Radic Biol Med 34(7):873–880

    CAS  PubMed  Google Scholar 

  • Crow JP, Beckman JS (1996) The importance of superoxide in nitric oxide-dependent toxicity: evidence for peroxynitrite-mediated injury. Adv Exp Med Biol 387:147–161

    CAS  PubMed  Google Scholar 

  • Dasuri K, Zhang L, Keller JN (2013) Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radic Biol Med 62:170–185

    CAS  PubMed  Google Scholar 

  • Degterev A, Hitomi J, Germscheid M, Chen IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4:313–321

    CAS  PubMed  Google Scholar 

  • Duan ML, Ulfendahl M, Laurell G, Counter SA, Pyykko I, Borg E, Rosenhall U (2002) Protection and treatment of sensorineural hearing disorders caused by exogenous factors: experimental findings and potential clinical application. Hear Res 169:169–178

    CAS  PubMed  Google Scholar 

  • Duffy S, So A, Murphy TH (1998) Activation of endogenous antioxidant defenses in neuronal cells prevents free radical-mediated damage. J Neurochem 71:69–77

    CAS  PubMed  Google Scholar 

  • Farrugia G, Balzan R (2012) Oxidative stress and programmed cell death in yeast. Front Oncol 2(64):1–22

    Google Scholar 

  • Fortunato G, Marciano E, Zarrilli F, Mazzaccara C, Intrieri M, Calcagno G, Vitale DF, La Manna P, Saulino C, Marcelli V, Sacchetti L (2004) Paraoxonase and superoxide dismutase gene polymorphisms and noise-induced hearing loss. Clin Chem 50(11):2012–2018

    CAS  PubMed  Google Scholar 

  • Fredelius L, Rask-Andersen H, Johansson B, Urquiza R, Bagger-Sjöbäck D, Wersäll J (1988) Time sequence of degeneration pattern of the organ of Corti after acoustic overstimulation. A light microscopical and electrophysiological investigation in the guinea pig. Acta Otolaryngol 106(1–2):81–93

    CAS  PubMed  Google Scholar 

  • Furness DN, Lawton DM, Mahendrasingam S, Hodierne L, Jagger DJ (2009) Quantitative analysis of the expression of the glutamate-aspartate transporter and identification of functional glutamate uptake reveal a role for cochlear fibrocytes in glutamate homeostasis. Neuroscience 162(4):1307–1321

    CAS  PubMed  Google Scholar 

  • Gong T-W, Lomax MI (2012) Genes that influence susceptibility to noise-induced hearing loss. Hear Res 40:179–203

    Google Scholar 

  • Günther C, Martini E, Wittkopf N, Amann K, Weigmann B, Neumann H, Waldner MJ, Hedrick SM, Tenzer S, Neurath MF, Becker C (2011) Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis. Nature 477:335–339

    PubMed Central  PubMed  Google Scholar 

  • Hakuba N, Gyo K, Yanagihara N, Mitani A, Kataoka K (1997) Efflux of glutamate into the perilymph of the cochlea following transient ischemia in the gerbil. Neurosci Lett 230(1):69–71

    CAS  PubMed  Google Scholar 

  • Hakuba N, Koga K, Gyo K, Usami SI, Tanaka K (2000) Exacerbation of noise-induced hearing loss in mice lacking the glutamate transporter GLAST. J Neurosci 20(23):8750–8753

    CAS  PubMed  Google Scholar 

  • Halliwell B, Cross CE (1994) Oxygen-derived species: their relation to human disease and environmental stress. Environ Health Perspect 10:5–12

    Google Scholar 

  • Hamerick RP, Turrentine G, Roberto M, Salvi R, Henderson D (1984) Anatomical correlates of impulse noise-induced mechanical damage in the cochlea. Hear Res 3:229–247

    Google Scholar 

  • Hamernik RP, Henderson D (1974) Impulse noise trauma. A study of histological susceptibility. Arch Otolaryngol 99:118–121

    CAS  PubMed  Google Scholar 

  • Hamernik RP, Henderson D, Crossley JJ, Salvi RJ (1974) Interaction of continuous and impulse noise: audiometric and histological effects. J Acoust Soc Am 55:117–121

    CAS  PubMed  Google Scholar 

  • Hawkins JE Jr, Johnsson LG, Stebbins WC, Moody DB, Coombs SL (1976) Hearing loss and cochlear pathology in monkeys after noise exposure. Acta Otolaryngol (Stockholm) 81:337–343

    Google Scholar 

  • He S, Wang L, Miao L, Wang T, Du F, Zhao L, Wang X (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137:1100–1111

    CAS  PubMed  Google Scholar 

  • Heinonen-Guzejev M, Vuorinen HS, Mussalo-Rauhamaa H, Heikkilä K, Koskenvuo M, Kaprio J (2005) Genetic component of noise sensitivity. Twin Res Hum Genet 8(3):245–249

    PubMed  Google Scholar 

  • Henderson D, Spongr V, Subramaniam M, Campo P (1994) Anatomical effects of impact noise. Hear Res 76(1–2):101–117

    CAS  PubMed  Google Scholar 

  • Henderson D, Bielefeld EC, Harris KC, Hu BH (2006) The role of oxidative stress in noise-induced hearing loss. Ear Hear 27(1):1–19

    PubMed  Google Scholar 

  • Hunter-Duvar IM, Bredberg G (1974) Effects of intense auditory stimulation: hearing losses and inner ear changes in the chinchilla. J Acoust Soc Am 55:795–801

    CAS  PubMed  Google Scholar 

  • Hunter-Duvar IM, Elliott DN (1972) Effects of intense auditory stimulation: hearing losses and inner ear changes in the squirrel monkey. J Acoust Soc Am 52:1181–1192

    CAS  PubMed  Google Scholar 

  • Hunter-Duvar IM, Elliott DN (1973) Effects of intense auditory stimulation: hearing losses and inner ear changes in the squirrel monkey II. J Acoust Soc Am 54:1179–1183

    CAS  PubMed  Google Scholar 

  • Infanger DW, Sharma RV, Davisson RL (2006) NADPH oxidases of the brain: distribution, regulation, and function. Antioxid Redox Signal 8(9–10):1583–1596

    CAS  PubMed  Google Scholar 

  • Jacono AA, Hu B, Kopke RD, Henderson D, Van De Water TR, Steinman HM (1998) Changes in cochlear antioxidant enzyme activity after sound conditioning and noise exposure in the chinchilla. Hear Res 117(1–2):31–38

    CAS  PubMed  Google Scholar 

  • Kahles T, Luedike P, Endres M, Galla HJ, Steinmetz H, Busse R, Neumann Haefelin T, Brandes RP (2007) NADPH oxidase plays a central role in blood–brain barrier damage in experimental stroke. Stroke 38(11):3000–3006

    CAS  PubMed  Google Scholar 

  • Kaiser WJ, Upton JW, Mocarski ES (2013) Viral modulation of programmed necrosis. Curr Opin Virol 3:296–306

    CAS  PubMed  Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science, 4th edn. McGraw-Hill Health Professions Division, New York

    Google Scholar 

  • Kim SJ, Li J (2013) Caspase blockade induces RIP3-mediated programmed necrosis in Toll-like receptor-activated microglia. Cell Death Dis 4:e716

    CAS  PubMed Central  PubMed  Google Scholar 

  • Konings A, Van Laer L, Pawelczyk M, Carlsson PI, Bondeson ML, Rajkowska E, Dudarewicz A, Vandevelde A, Fransen E, Huyghe J, Borg E, Sliwinska-Kowalska M, Van Camp G (2007) Association between variations in CAT and noise-induced hearing loss in two independent noise-exposed populations. Hum Mol Genet 16(15):1872–1883

    CAS  PubMed  Google Scholar 

  • Konishi K, Yamane H, Iguchi H, Takayama M, Nakagawa T, Sunami K, Nakai Y (1998) Local substances regulating cochlear blood flow. Acta Otolaryngol Suppl 538:40–46

    CAS  PubMed  Google Scholar 

  • Kopke RD, Weisskopf PA, Boone JL, Jackson RL, Wester DC, Hoffer ME, Lambert DC, Charon CC, Ding DL, McBride D (2000) Reduction of noise-induced hearing loss using L-NAC and salicylate in the chinchilla. Hear Res 149(1–2):138–146

    CAS  PubMed  Google Scholar 

  • Krause K (2004) Tissue distribution and putative physiological function of NOX family NADPH oxidases. Jpn J Infect Dis 57:28–29

    Google Scholar 

  • Lamm K, Arnold W (1996) Noise-induced cochlear hypoxia is intensity dependent, correlates with hearing loss and precedes reduction of cochlear blood flow. Audiol Neurootol 1(3):148–160

    CAS  PubMed  Google Scholar 

  • Latoni J, Shivapuja B, Seidman MD, Quirk WS (1996) Pentoxifylline maintains cochlear microcirculation and attenuates temporary threshold shifts following acoustic overstimulation. Acta Otolaryngol 116(3):388–394

    CAS  PubMed  Google Scholar 

  • Laurikainen EA, Costa O, Miller JM, Nuttall AL, Ren TY, Masta R, Quirk WS, Robinson PJ (1994) Neuronal regulation of cochlear blood flow in the guinea-pig. J Physiol 480(3):563–573

    CAS  PubMed Central  PubMed  Google Scholar 

  • Le Prell CG, Yamashita D, Minami S, Yamasoba T, Miller JM (2007) Mechanisms of noise-induced hearing loss indicate multiple methods of prevention. Hear Res 226:22–43

    PubMed Central  PubMed  Google Scholar 

  • Lim DJ, Melnick W (1971) Acoustic damage of the cochlea. A scanning and transmission electron microscopic observation. Arch Otolaryngol 94(4):294–305

    CAS  PubMed  Google Scholar 

  • Linkermann A, Green DR (2014) Necroptosis. N Engl J Med 370(5):455–465

    CAS  PubMed Central  PubMed  Google Scholar 

  • Linkermann A, Bräsen JH, Himmerkus N, Liu S, Huber TB, Kunzendorf U, Krautwald S (2012) Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury. Kidney Int 81:751–761

    CAS  PubMed  Google Scholar 

  • Mates JA, Segura FJ, Alonso JM, Javier M (2012) Oxidative stress in apoptosis and cancer: an update. Arch Toxicol 86(11):1649–1665

    CAS  PubMed  Google Scholar 

  • Matoba T, Shimokawa H, Nakashima M, Hirakawa Y, Mukai Y, Hirano K, Kanaide H, Takeshita A (2000) Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. J Clin Invest 106:1521–1530

    CAS  PubMed Central  PubMed  Google Scholar 

  • McFadden SL, Ding DL, Ohlemiller KK, Salvi RJ (2001) The role of superoxide dismutase in age-related and noise-induced hearing loss: clues from Sod1 knockout mice. In: Willot JF (ed) Handbook of mouse auditory research; from behavior to molecular biology. CRC Press, New York, pp 489–504

    Google Scholar 

  • Miller JM, Dengerink H (1988) Control of inner ear blood flow. Am J Otolaryngol 9(6):302–316

    CAS  PubMed  Google Scholar 

  • Miller DM, Buettner GR, Aust SD (1990) Transition metals as catalysts of “autoxidation” reactions. Free Radic Biol Med 8:95–108

    CAS  PubMed  Google Scholar 

  • Miller JM, Ren TY, Laurikainen E, Golding-Wood D, Nuttall AL (1995) Hydrops-induced changes in cochlear blood flow. Ann Otol Rhinol Laryngol 104(6):476–483

    CAS  PubMed  Google Scholar 

  • Miller JM, Brown JN, Schacht J (2003) 8-iso-prostaglandin F(2alpha), a product of noise exposure, reduces inner ear blood flow. Audiol Neurootol 8(4):207–221

    CAS  PubMed  Google Scholar 

  • Nagashima R, Sugiyama C, Yoneyama M, Kuramoto N, Kawada K, Ogita K (2007) Acoustic overstimulation facilitates the expression of glutamate-cysteine ligase catalytic subunit probably through enhanced DNA binding of activator protein-1 and/or NF-kappaB in the murine cochlea. Neurochem Int 51(2–4):209–215

    CAS  PubMed  Google Scholar 

  • Nanetti L, Raffaelli F, Vignini A, Perozzi C, Silvestrini M, Bartolini M, Provinciali L, Mazzanti L (2011) Oxidative stress in ischaemic stroke. Eur J Clin Invest 41(12):1318–1322

    CAS  PubMed  Google Scholar 

  • National Institute for Occupational Safety and Health (NIOSH): noise and hearing loss prevention, 2013. http://www.cdc.gov/niosh/topics/noise/. Accessed 11 July 2013

  • Nelson DI, Nelson RY, Concha-Barrientos M, Fingerhut M (2005) The global burden of occupational noise-induced hearing loss. Am J Ind Med 48:446–458

    PubMed  Google Scholar 

  • Nicotera T, Henderson D, Zheng XY, Ding DL, McFadden SL (1999) Reactive oxygen species, apoptosis and necrosis in noise-exposed cochleas of chinchillas. Paper presented at the 22nd Annual Midwinter Meeting of the Association for Research in Otolaryngology, St. Petersburg, FL

    Google Scholar 

  • Niu X, Shao R, Canlon B (2003) Suppression of apoptosis occurs in the cochlea by sound conditioning. Neuroreport 14(7):1025–1029

    CAS  PubMed  Google Scholar 

  • Numajiri N, Takasawa K, Nishiya T, Tanaka H, Ohno K, Hayakawa W, Asada M, Matsuda H, Azumi K, Kamata H, Nakamura T, Hara H, Minami M, Lipton SA, Uehara T (2011) On-off system for PI3-kinase-Akt signaling through S-nitrosylation of phosphatase with sequence homology to tensin (PTEN). Proc Natl Acad Sci U S A 108(25):10349–10354

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oberst A, Green DR (2011) It cuts both ways: reconciling the dual roles of caspase 8 in cell death and survival. Nat Rev Mol Cell Biol 12:757–763

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oerlemans MI, Liu J, Arslan F, den Ouden K, van Middelaar BJ, Doevendans PA, Sluijter JP (2012) Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia-reperfusion in vivo. Basic Res Cardiol 107(4):270

    PubMed  Google Scholar 

  • Ohinata Y, Miller JM, Altschuler RA, Schacht J (2000) Intense noise induces formation of vasoactive lipid peroxidation products in the cochlea. Brain Res 878:163–173

    CAS  PubMed  Google Scholar 

  • Ohlemiller KK, McFadden SL, Ding DL, Flood DG, Reaume AG, Hoffman EK, Scott RW, Wright JS, Putcha GV, Salvi RJ (1999a) Targeted deletion of the cytosolic Cu/Zn-superoxide dismutase gene (Sod1) increases susceptibility to noise-induced hearing loss. Audiol Neurootol 4:237–246

    CAS  PubMed  Google Scholar 

  • Ohlemiller KK, Wright JS, Dugan LL (1999b) Early elevation of cochlear reactive oxygen species following noise exposure. Audiol Neurootol 4:229–236

    CAS  PubMed  Google Scholar 

  • Ohlemiller KK, McFadden SL, Ding DL, Lear PM, Ho YS (2000) Targeted mutation of the gene for cellular glutathione peroxidase (Gpx1) increases noise-induced hearing loss in mice. J Assoc Res Otolaryngol 1:243–254

    CAS  PubMed Central  PubMed  Google Scholar 

  • Orrenius S, Gogvadze V, Zhivotovsky B (2007) Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol 47:143–183

    CAS  PubMed  Google Scholar 

  • Poirrier AL, Pincemail J, Van Den Ackerveken P, Lefebvre PP, Malgrange B (2010) Oxidative stress in the cochlea: an update. Curr Med Chem 17:3591–3604

    CAS  PubMed  Google Scholar 

  • Primo-Parmo SL, Sorenson RC, Teiber J, La Du BN (1996) The human serum paraoxonase/arylesterase gene (PON1) is one member of a multigene family. Genomics 33(3):498–507

    CAS  PubMed  Google Scholar 

  • Pujol R, Puel JL, D’Aldin CG, Eybalin M (1990) Physiopathology of the glutaminergic synapses in the cochlea. Acta Otolaryngol Suppl 476:32–36

    CAS  PubMed  Google Scholar 

  • Quirk WS, Avinash G, Nuttall AL, Miller JM (1992) The influence of loud sound on red blood cell velocity and blood vessel diameter in the cochlea. Hear Res 63:102–107

    CAS  PubMed  Google Scholar 

  • Rabinowitz PM, Pierce Wise J Sr, Hur Mobo B, Antonucci PG, Powell C, Slade M (2002) Antioxidant status and hearing function in noise-exposed workers. Hear Res 173(1–2):164–171

    CAS  PubMed  Google Scholar 

  • Ramazzini B (2001) De morbis artificum diatriba [diseases of workers]. 1713. Am J Public Health 91(9):1380–1382

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rarey KE, Yao X (1996) Localization of Cu/Zn-SOD and Mn-SOD in the rat cochlea. Acta Otolaryngol 116(6):833–835

    CAS  PubMed  Google Scholar 

  • Schopfer FJ, Baker PR, Freeman BA (2003) NO-dependent protein nitration: a cell signaling event or an oxidative inflammatory response? Trends Biochem Sci 28:646–654

    CAS  PubMed  Google Scholar 

  • Schuknecht HF (1993) Acoustic trauma. In: Schuknecht HF (ed) Pathology of the ear. Lea and Febiger, Philadelphia, PA, pp 289–294

    Google Scholar 

  • Seidman MD, Shivapuja BG, Quirk WS (1993) The protective effects of allopurinol and superoxide dismutase on noise-induced cochlear damage. Otolaryngol Head Neck Surg 109(6):1052–1056

    CAS  PubMed  Google Scholar 

  • Seya T, Shime H, Takaki H, Azuma M, Oshiumi H, Matsumoto M (2012) TLR3/TICAM-1 signaling in tumor cell RIP3-dependent necroptosis. Oncoimmunology 1:917–923

    PubMed Central  PubMed  Google Scholar 

  • Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415–418

    CAS  PubMed  Google Scholar 

  • Sinha K, Das J, Pal PB, Sil PC (2013) Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol 87(7):1157–1180

    CAS  PubMed  Google Scholar 

  • Smith CC, Davidson SM, Lim SY, Simpkin JC, Hothersall JS, Yellon DM (2007) Necrostatin: a potentially novel cardioprotective agent? Cardiovasc Drugs Ther 21:227–233

    CAS  PubMed  Google Scholar 

  • Smith JA, Park S, Krause JS, Banik NL (2013) Oxidative stress, DNA damage, and the telomeric complex as therapeutic targets in acute neurodegeneration. Neurochem Int 62(5):764–775

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spoendlin H (1971) Primary structural changes in the organ of Corti after acoustic overstimulation. Acta Otolaryngol (Stockholm) 71:166–176

    CAS  Google Scholar 

  • Staecker H, Zheng QY, Van De Water TR (2001) Oxidative stress in aging in the C57B16/J mouse cochlea. Acta Otolaryngol 121(6):666–672

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suemori S, Shimazawa M, Kawase K, Satoh M, Nagase H, Yamamoto T, Hara H (2006) Metallothionein, an endogenous antioxidant, protects against retinal neuron damage in mice. Invest Ophthalmol Vis Sci 47:3975–3982

    PubMed  Google Scholar 

  • Thalmann R, Miyoshi T, Kusakari J, Ise I (1975) Normal and abnormal energy metabolism of the inner ear. Otolaryngol Clin North Am 8:313–333

    CAS  PubMed  Google Scholar 

  • Thorne PR, Nuttall AL (1987) Laser Doppler measurements of cochlear blood flow during loud sound exposure in the guinea pig. Hear Res 27:1–10

    CAS  PubMed  Google Scholar 

  • Upton JW, Kaiser WJ, Mocarski ES (2012) DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 11:290–297

    CAS  PubMed Central  PubMed  Google Scholar 

  • Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    CAS  PubMed  Google Scholar 

  • Valko M, Leibfritz D, Moncola J, Cronin Mark TD, Mazura M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    CAS  PubMed  Google Scholar 

  • Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11:700–714

    CAS  PubMed  Google Scholar 

  • Vatassery GT (1998) Vitamin E and other endogenous antioxidants in the central nervous system. Geriatrics 53(Suppl 1):S25–S27

    PubMed  Google Scholar 

  • Vicente-Torres MA, Schacht J (2006) A BAD link to mitochondrial cell death in the cochlea of mice with noise-induced hearing loss. J Neurosci Res 83(8):1564–1572

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vlajkovic SM, Lin SC, Wong AC, Wackrow B, Thorne PR (2013) Noise-induced changes in expression levels of NADPH oxidases in the cochlea. Hear Res 304:145–152

    CAS  PubMed  Google Scholar 

  • Wang J, Dib M, Lenoir M, Vago P, Eybalin M, Hameg A, Pujol R, Puel JL (2002) Riluzole rescues cochlear sensory cells from acoustic trauma in the guinea-pig. Neuroscience 111(3):635–648

    CAS  PubMed  Google Scholar 

  • Wangemann P (2002) K+ cycling and the endocochlear potential. Hear Res 165:1–9

    CAS  PubMed  Google Scholar 

  • Weinlich R, Dillon CP, Green DR (2011) Ripped to death. Trends Cell Biol 21:630–637

    CAS  PubMed Central  PubMed  Google Scholar 

  • Welz PS, Pasparakis M (2012) A way to DAI. Cell Host Microbe 11:223–225

    CAS  PubMed  Google Scholar 

  • Welz PS, Wullaert A, Vlantis K, Kondylis V, Fernández-Majada V, Ermolaeva M, Kirsch P, Sterner-Kock A, van Loo G, Pasparakis M (2011) FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature 477:330–334

    CAS  PubMed  Google Scholar 

  • Wonsey DR, Zeller KI, Dang CV (2002) The c-Myc target gene PRDX3 is required for mitochondrial homeostasis and neoplastic transformation. Proc Natl Acad Sci U S A 99:6649–6654

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu W, Liu P, Li J (2012) Necroptosis: an emerging form of programmed cell death. Crit Rev Oncol Hematol 82:249–258

    PubMed  Google Scholar 

  • Yamane H, Nakai Y, Takayama M, Iguchi H, Nakagawa T, Kojima A (1995) Appearance of free radicals in the guinea pig inner ear after noise-induced acoustic trauma. Eur Arch Otorhinolaryngol 252(8):504–508

    CAS  PubMed  Google Scholar 

  • Yamashita D, Jiang HY, Schacht J, Miller JM (2004a) Delayed production of free radicals following noise exposure. Brain Res 1019(1–2):201–209

    CAS  PubMed  Google Scholar 

  • Yamashita D, Miller JM, Jiang HY, Minami SB, Schacht J (2004b) AIF and EndoG in noise-induced hearing loss. Neuroreport 15(18):2719–2722

    PubMed  Google Scholar 

  • Yamashita D, Jiang HY, Le Prell CG, Schacht J, Miller JM (2005) Post-exposure treatment attenuates noise-induced hearing loss. Neuroscience 134(2):633–642

    CAS  PubMed  Google Scholar 

  • Yamashita D, Minami SB, Kanzaki S, Ogawa K, Miller JM (2008) Bcl-2 genes regulate noise-induced hearing loss. J Neurosci Res 86(4):920–928

    CAS  PubMed  Google Scholar 

  • Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ, Han J (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325:332–336

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Yamashita M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yamashita, D. (2015). Oxidative Stress in Noise-Induced Hearing Loss. In: Miller, J., Le Prell, C., Rybak, L. (eds) Free Radicals in ENT Pathology. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Cham. https://doi.org/10.1007/978-3-319-13473-4_8

Download citation

Publish with us

Policies and ethics