Skip to main content

Atmospheric processes responsible for generation of the 2008 Boothbay meteotsunami

  • Original Paper
  • Chapter
  • First Online:
Meteorological Tsunamis: The U.S. East Coast and Other Coastal Regions

Abstract

We investigated the atmospheric processes and physics that were active during a tsunami-like event hitting Boothbay Harbor area (Maine, USA) on 28 October 2008. The data collected by tide gauges, ground and sounding stations and meteo–ocean buoys in the area were analyzed, together with satellite and radar images. The atmospheric processes were reproduced by the weather research and forecasting model, verified by in situ and remote sensing data. A cold front moved over the area at the time of the event, with embedded convective clouds detected by satellite and radar data and the internal gravity waves (IGWs) detected by radar and reproduced by the model at the rear of the frontal precipitation band. According to the model, the IGWs that passed over Boothbay Harbor generated strong ground air-pressure oscillations reaching 2.5 hPa/3 min. The IGWs were ducted towards the coast without significant dissipation, propagating in a stable near-surface layer capped by an instability at approximately 3.5 km height and satisfying all conditions for their maintenance over larger areas. The intensity, speed and direction of the IGWs were favourable for generation of a meteotsunami wave along the Gulf of Maine shelf. Operational observation systems were not capable of sufficiently capturing the ground disturbance due to a too coarse sampling rate, while the numerical model was found to be a useful tool in eventual future detection and warning systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Belušić D, Strelec-Mahović N (2009) Detecting and following atmospheric disturbances with a potential to generate meteotsunamis in the Adriatic. Phys Chem Earth 34:918–927

    Article  Google Scholar 

  • Belušić D, Grisogono B, Klaić ZB (2007) Atmospheric origin of the devastating coupled air-sea event in the east Adriatic. J Geophys Res 112:D17111. doi:10.1029/2006JD008204

    Article  Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Wea Rev 129:569–585

    Article  Google Scholar 

  • Cheng CM, Alpers W (2010) Investigation of trapped atmospheric gravity waves over the South China Sea using Envisat Synthetic Aperture Radar images. Int J Remote Sens 31:4725–4742

    Article  Google Scholar 

  • Churchill DD, Houston SH, Bond NA (1995) The Daytona Beach wave of 3–4 July 1992: a shallow water gravity wave forced by a propagating squall line. Bull Am Meteorol Soc 76:21–32

    Article  Google Scholar 

  • De Jong MPC, Battjes JA (2004) Low-frequency sea waves generated by atmospheric convection cells. J Geophys Res 109:C01011. doi:10.1029/2003JC001931

    Article  Google Scholar 

  • Dragani WC, Mazio CA, Nuñez MN (2002) Sea level oscillations in coastal waters of the Buenos Aires province, Argentina. Cont Shelf Res 22:779–790

    Article  Google Scholar 

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107

    Article  Google Scholar 

  • Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res 108(D22):8851. doi:10.1029/2002JD003296

    Article  Google Scholar 

  • Haslett SK, Bryant EA (2009) Meteorological tsunami in Southern Britain: an historical review. Geogr Rev 99:146–163

    Article  Google Scholar 

  • Hibiya T, Kajiura K (1982) Origin of the Abiki phenomenon (a kind of seiche) in Nagasaki Bay. J Oceanogr Soc Jpn 38:172–182

    Article  Google Scholar 

  • Horvath K, Koracin D, Vellore RK, Jiang J, Belu R (2012) Sub-kilometer dynamical downscaling of near-surface winds in complex terrain using WRF and MM5 mesoscale models. J Geophys Res 117:D11. doi:10.1029/2012JD017432

    Article  Google Scholar 

  • Janjić ZI (1996) The surface layer in the NCEP Eta model. 11th conference on NWP, Norfolk, VA, Am Meteorol Soc, pp 354–355

    Google Scholar 

  • Janjić ZI (2001) Nonsingular implementation of the Mellor-Yamada Level 2.5 scheme in the NCEP meso model. NCEP Office Note No. 437, 61 pp

    Google Scholar 

  • Jansà A, Monserrat S, Gomis D (2007) The rissaga of 15 June 2006 in Ciutadella (Menorca), a meteorological tsunami. Adv Geosci 12:1–4

    Article  Google Scholar 

  • Kain JS (2004) The Kain-Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181

    Article  Google Scholar 

  • Kain JS, Fritsch JM (1993) Convective parameterization for mesoscale models: The Kain-Fritsch scheme. In: Emanuel KA, Raymond DJ (eds) The representation of cumulus convection in numerical models. Am Meteorol Soc, Boston, pp 165–170

    Chapter  Google Scholar 

  • Kidder SQ, Vonder Haar TH (1995) Satellite meteorology: an introduction. Academic Press, San Diego, p 466

    Google Scholar 

  • Laprise R (1992) The Euler equations of motion with hydrostatic-pressure as an independent variable. Mon Wea Rev 120:197–208

    Article  Google Scholar 

  • Lin Y-L (2007) Mesoscale dynamics. Cambridge University Press, Cambridge, p 630

    Book  Google Scholar 

  • Lindzen RS (1974) Wave-CISK in the tropics. J Atmos Sci 31:156–179

    Article  Google Scholar 

  • Lindzen RS, Tung K–K (1976) Banded convective activity and ducted gravity waves. Mon Wea Rev 104:1602–1617

    Article  Google Scholar 

  • Mecking JV, Fogarty CT, Greatbatch RJ, Sheng J, Mercer D (2000) Using atmospheric model output to simulate the meteorological tsunami response to Tropical Storm Helene (2000). J Geophys Res 114:C10005. doi:10.1029/2009JC005290

    Article  Google Scholar 

  • Mellor GL, Yamada T (1974) Hierarchy of turbulent closure models for planetary boundary-layers. J Atmos Sci 31:1791–1806

    Article  Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulent closure-model for geophysical fluid problems. Rev Geophys 20:851–875

    Article  Google Scholar 

  • Mercer D, Sheng J, Greatbatch RJ, Bobanović J (2002) Barotropic waves generated by storms moving rapidly over shallow water. J Geophys Res 107(C10):3152. doi:10.1029/2001JC001140

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16663–16682. doi:10.1029/97JD00237

    Article  Google Scholar 

  • Monserrat S, Thorpe AJ (1992) Gravity-wave observation using an array of microbarographs in the Balearic Islands. Q J R Meteorol Soc 118:259–282

    Google Scholar 

  • Monserrat S, Thorpe AJ (1996) Use of ducting theory in an observed case of gravity waves. J Atmos Sci 53:1724–1736

    Article  Google Scholar 

  • Monserrat S, Ramis C, Thorpe AJ (1991) Large-amplitude pressure oscillations in the Western Mediterranean. Geophys Res Lett 18:183–186

    Article  Google Scholar 

  • Monserrat S, Rabinovich AB, Casas B (1998) On the reconstruction of the transfer function for atmospherically generated seiches. Geophys Res Lett 25:2197–2200

    Article  Google Scholar 

  • Monserrat S, Vilibić I, Rabinovich AB (2006) Meteotsunamis: atmospherically induced destructive ocean waves in the tsunami frequency band. Nat Hazards Earth Syst Sci 6:1035–1051

    Article  Google Scholar 

  • Nappo CJ (2002) An Introduction to Atmospheric Gravity Waves. Academic Press, San Diego, p 276

    Google Scholar 

  • Nikolkina I, Didenkulova I (2012) Catalogue of rogue waves reported in media in 2006-2010. Nat Hazards 61:989–1006

    Article  Google Scholar 

  • Orlić M, Belušić D, Janeković I, Pasarić M (2010) Fresh evidence relating the great Adriatic surge of 21 June 1978 to mesoscale atmospheric forcing. J Geophys Res 115:C06011. doi:10.1029/2009JC005777

    Article  Google Scholar 

  • Pawlowicz R, Beardsley B, Lentz S (2002) Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput Geosci 28:929–937

    Article  Google Scholar 

  • Paxton CH, Sobien DA (1998) Resonant interaction between an atmospheric gravity wave and shallow water wave along Florida’s west coast. Bull Am Meteorol Soc 79:2727–2732

    Article  Google Scholar 

  • Proudman J (1929) The effects on the sea of changes in atmospheric pressure. Geophys Suppl Mon Notices R Astron Soc 2(4):197–209

    Article  Google Scholar 

  • Rabinovich AB (2009) Seiches and harbour oscillations. In: Kim YC (ed) Handbook of Coastal and Ocean Engineering. World Scientific Publ, Singapore, pp 193–236

    Chapter  Google Scholar 

  • Reisner J, Rasmussen RM, Bruintjes RT (1998) Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Q J R Meteor Soc 124B:1071–1107

    Article  Google Scholar 

  • Renault L, Vizoso G, Jansá A, Wilkin J, Tintoré J (2011) Toward the predictability of meteotsunamis in the Balearic Sea using regional nested atmosphere and ocean models. Geophys Res Lett 38:L10601. doi:10.1029/2011GL047361

    Article  Google Scholar 

  • Sallenger AH Jr, List JH, Gelfenbaum G, Stumpf RP, Hansen M (1995) Large wave at Daytona Beach, Florida, explained as a squall-line surge. J Coastal Res 11:1383–1388

    Google Scholar 

  • Schroeder G, Schlünzen KH (2009) Numerical dispersion of gravity waves. Mon Wea Rev 137:4344–4354

    Article  Google Scholar 

  • Šepić J, Vilibić I (2011) The development and implementation of a real-time meteotsunami warning network for the Adriatic Sea. Nat Hazards Earth Syst Sci 11:83–91

    Article  Google Scholar 

  • Šepić J, Vilibić I, Belušić D (2009) The source of the 2007 Ist meteotsunami (Adriatic Sea). J Geophys Res 114:C03016. doi:10.1029/2008JC005092

    Article  Google Scholar 

  • Šepić J, Vilibić I, Strelec Mahović N (2012) Northern Adriatic meteorological tsunamis: observations, link to the atmosphere, and predictability. J Geophys Res 117:C02002. doi:10.1029/2011JC007608

    Article  Google Scholar 

  • Skamarock WC (2004) Evaluating mesoscale NWP models using kinetic energy spectra. Mon Wea Rev 132:3019–3032

    Article  Google Scholar 

  • Skamarock WC, Klemp JB (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys 227:3465–3485

    Article  Google Scholar 

  • Tanaka K (2010) Atmospheric pressure-wave bands around a cold front resulted in a meteotsunami in the East China Sea in February 2009. Nat Hazards Earth Syst Sci 10:2599–2610

    Article  Google Scholar 

  • Thomson RE, Rabinovich AB, Krassovski MV (2007) Double jeopardy: concurrent arrival of the 2004 Sumatra tsunami and storm-generated waves on the Atlantic coast of the United States and Canada. Geophys Res Lett 34:L15607. doi:10.1029/2007GL030685

    Article  Google Scholar 

  • Thomson RE, Rabinovich AB, Fine IV, Sinnott DC, McCarthy A, Sutherland NAS, Neil LK (2009) Meteorological tsunamis on the coasts of British Columbia and Washington. Phys Chem Earth 34:971–988

    Article  Google Scholar 

  • Valachova M, Pucik T, Zak M (2011) Severe convective weather of the 15th August 2010. WDS’11 proceedings of contributed papers, part III, pp 72–77

    Google Scholar 

  • Vilibić I (2008) Numerical simulations of the Proudman resonance. Cont Shelf Res 28:574–581

    Article  Google Scholar 

  • Vilibić I, Šepić J (2009) Destructive meteotsunamis along the eastern Adriatic coast: overview. Phys Chem Earth 34:904–917

    Article  Google Scholar 

  • Vilibić I, Domijan N, Orlić M, Leder N, Pasarić M (2004) Resonant coupling of a traveling air pressure disturbance with the east Adriatic coastal waters. J Geophys Res 109:C10001. doi:10.1029/2004JC002279

    Article  Google Scholar 

  • Vilibić I, Šepić J, Ranguelov B, Strelec Mahović N, Tinti S (2010) Possible atmospheric origin of the 7 May 2007 western Black Sea shelf tsunami event. J Geophys Res 115:C07006. doi:10.1029/2009JC005904

    Article  Google Scholar 

  • Yankovsky AE (2009) Large-scale edge waves generated by hurricane landfall. J Geophys Res 114:C03014. doi:10.1029/2008JC005113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Vilibić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vilibić, I. et al. (2013). Atmospheric processes responsible for generation of the 2008 Boothbay meteotsunami. In: Vilibić, I., Monserrat, S., Rabinovich, A.B. (eds) Meteorological Tsunamis: The U.S. East Coast and Other Coastal Regions. Springer, Cham. https://doi.org/10.1007/978-3-319-12712-5_3

Download citation

Publish with us

Policies and ethics