Skip to main content

Experimental Studies: Molecular Interactions at Clay Interfaces

  • Chapter
  • First Online:
Greenhouse Gases and Clay Minerals

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Water vapor, carbon dioxide, and methane have extensively been studied because of their significant impact on energy security and environmental sustainability. Interaction of water with clay minerals strongly depends on the exchangeable cations in the interlayer. Interlayer H2O forms a coordination shell around cation through temperature-dependent interaction between the cation and water oxygen—three distinct mechanisms have been identified. Various forms of CO2 and its interaction with geomaterials include supercritical fluid, gas dissolved into brine, and (bi-) carbonate species. Due to the heterogeneity of geological formations, the interactions between geomaterials and injected fluids (and gas-in-place) are very complex and may result in dramatic changes in the rock formations. Mineral precipitation and dissolution reactions under low-water conditions have not received much attention so far, although water-bearing CO2 can mediate important geochemical reactions; which is also true for water-saturated samples exposed to dry CO2. In swelling smectites, the term “nano-confinement” was introduced to characterize the initial trapping of CO2 molecules in the interlayer, with subsequent conversion to carbonates. The nano-confined CO2 is distinguished by the red-shift in asymmetric-stretch vibration, which depends on the hydration state as confirmed by exposure to elevated temperatures. The presence of CO2 and H2O has a considerable effect on CH4 sorption on clays. The idea of utilizing competitive sorption of CO2 and CH4 on shales in depleted reservoirs for enhanced gas recovery and concomitant carbon storage has been gaining momentum and for a good reason as discussed in this chapter.

We must be clear that when it comes to atoms, language can be used only as in poetry. The poet, too, is not nearly so concerned with describing facts as with creating images and establishing mental connections.

—Quotations by Niels Bohr.

Science is the belief in the ignorance of experts.

—Quotations by Richard P. Feynman.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adler, H. H., & Kerr, P. F. (1963). Infrared absorption frequency trends for anhydrous normal carbonates. American Mineralogist, 48(1–2), 124–137.

    Google Scholar 

  • Amarasinghe, P. M., Katti, K. S., & Katti, D. R. (2008). Molecular hydraulic properties of montmorillonite: A polarized Fourier transform infrared spectroscopic study. Applied Spectroscopy, 62(12), 1303–1313.

    Article  Google Scholar 

  • Bansal, R. C., Vastola, F. J., & Walker, P. L., Jr. (1970). Studies on ultraclean carbon surfaces: II. Kinetics of chemisorption of oxygen on graphon. Journal of Colloid and Interface Science, 32(2), 187–194.

    Article  Google Scholar 

  • Barriga, C., et al. (2002). Hydrotalcites as sorbent for 2,4,6-trinitrophenol: Influence of the layer composition and interlayer anion. Journal of Materials Chemistry, 12, 1027–1034.

    Article  Google Scholar 

  • Brubach, J. B., et al. (2005). Signatures of the hydrogen bonding in the infrared bands of water. Journal of Chemical Physics, 122(18), 184509.

    Article  Google Scholar 

  • Bulut, E., Özacar, M., & Şengil, İ. A. (2008). Equilibrium and kinetic data and process design for adsorption of Congo Red onto bentonite. Journal of Hazardous Materials, 154(1–3), 613–622.

    Article  Google Scholar 

  • Busch, A., et al. (2008). Carbon dioxide storage potential of shales. International Journal of Greenhouse Gas Control, 2(3), 297–308.

    Article  Google Scholar 

  • Busch, A., et al. (2009). Effects of physical sorption and chemical reactions of CO2 in shaly caprocks. Energy Procedia, 1(1), 3229–3235.

    Article  Google Scholar 

  • Busch, A., et al. (2016). On sorption and swelling of CO2 in clays. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2(2), 111–130.

    Article  MathSciNet  Google Scholar 

  • de Jong, S. M., Spiers, C. J., & Busch, A. (2014). Development of swelling strain in smectite clays through exposure to carbon dioxide. International Journal of Greenhouse Gas Control, 24, 149–161.

    Article  Google Scholar 

  • Eisenberg, D., & Kauzman, W. (1969). The structure and properties of water. Oxford: Oxford University Press.

    Google Scholar 

  • Farmer, V. C. (1968). Infrared spectroscopy in clay mineral studies. Clay Minerals, 7(4), 373–387.

    Article  Google Scholar 

  • Farmer, V. C. (1971). The characterization of adsorption bonds in clays by infrared spectroscopy. Soil Science, 112(1), 62–68.

    Article  Google Scholar 

  • Farmer, V. C. (1974). The infrared spectra of minerals. London: Mineralogical Society.

    Book  Google Scholar 

  • Farmer, V. C., & Mortland, M. M. (1966). An infrared study of the co-ordination of pyridine and water to exchangeable cations in montmorillonite and saponite. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 344–351.

    Google Scholar 

  • Farmer, V. C., & Russell, J. D. (1967). Infrared absorption spectrometry in clay studies. Clays and Clay Minerals, 15(1), 121–142.

    Article  Google Scholar 

  • Farmer, V. C., & Russell, J. D. (1971). lnterlayer complexes in layer silicates, the structure of water in lamellar ionic solutions. Transactions of the Faraday Society, 67, 2737–3749.

    Article  Google Scholar 

  • Fripiat, J. J., Cruz, M. I., Bohor, B. F., & Thomas, J., Jr. (1974). Interlamellar adsorption of carbon dioxide by smectites. Clays and Clay Minerals, 22(1), 23–30.

    Article  Google Scholar 

  • Fukuda, J.-I. (2012). Water in rocks and minerals—species, distributions, and temperature dependences. In T. M. Theophanides (Ed.), Infrared Spectroscopy—materials science, engineering and technology (pp. 77–96). Princeton: InTech.

    Google Scholar 

  • Fukuda, J., & Nakashima, S. (2008). Water at high temperatures in a microcrystalline silica (chalcedony) by in-situ infrared spectroscopy: Physicochemical states and dehydration behavior. Journal of Mineralogical and Petrological Sciences, 103(2), 112–115.

    Article  Google Scholar 

  • Fukuda, J., & Shinoda, K. (2008). Coordination of water molecules with Na+ cations in a beryl channel as determined by polarized IR spectroscopy. Physics and Chemistry of Minerals, 35(6), 347–357.

    Article  Google Scholar 

  • Fukuda, J., & Shinoda, K. (2011). Water molecules in beryl and cordierite: High-temperature vibrational behavior, dehydration, and coordination to cations. Physics and Chemistry of Minerals, 38(6), 469–481.

    Article  Google Scholar 

  • Fukuda, J., Yokoyama, T., & Kirino, Y. (2009). Characterization of the states and diffusivity of intergranular water in a chalcedonic quartz by high-temperature in situ infrared spectroscopy. Mineralogy Magazine, 73(5), 825–835.

    Article  Google Scholar 

  • Glezakou, V.-A., Rousseau, R., Dang, L. X., & McGrail, B. P. (2010). Structure, dynamics and vibrational spectrum of supercritical CO2/H2O mixtures from ab initio molecular dynamics as a function of water cluster formation. Physical Chemistry Chemical Physics, 12(31), 8759–8771.

    Article  Google Scholar 

  • Head-Gordon, T., & Johnson, M. E. (2006). Tetrahedral structure or chains for liquid water. Proceedings of the National Academy of Sciences of the United States of America, 103(21), 16614–16615.

    Article  Google Scholar 

  • Heller-Kallai, L. (2001). Protonation-deprotonation of dioctahedral smectites. Applied Clay Science, 20(1–2), 27–38.

    Article  Google Scholar 

  • Hong, L., et al. (2016). Factors affecting the interaction of CO2 and CH4 in Marcellus Shale from the Appalachian Basin. Journal of Unconventional Oil and Gas Resources, 14, 99–112.

    Article  Google Scholar 

  • Horsch, S., Serhatkulu, G., Gulari, E., & Kannan, R. M. (2006). Supercritical CO2 dispersion of nano-clays and clay/polymer nanocomposites. Polymer, 47(21), 7485–7496.

    Article  Google Scholar 

  • Hur, T.-B., et al. (2013). Carbonate formation in Wyoming montmorillonite under high pressure carbon dioxide. International Journal of Greenhouse Gas Control, 13, 149–155.

    Article  Google Scholar 

  • IPCC (2005). Climate change 2005: Carbon dioxide capture and storage. A special report of Working Group III of the fourth assessment report of the Intergovernmental Panel on Climate Change, Cambridge and New York: Cambridge University Press.

    Google Scholar 

  • Ji, L., et al. (2012). Experimental investigation of main controls to methane adsorption in clay-rich rocks. Applied Geochemistry, 27(12), 2533–2545.

    Article  Google Scholar 

  • Jin, Z., & Firoozabadi, A. (2013). Methane and carbon dioxide adsorption in clay-like slit pores by Monte Carlo simulations. Fluid Phase Equilibria, 360, 456–465.

    Article  Google Scholar 

  • Jin, Z., & Firoozabadi, A. (2014). Effect of water on methane and carbon dioxide sorption in clay minerals by Monte Carlo simulations. Fluid Phase Equilibria, 382, 10–20.

    Article  Google Scholar 

  • Johnston, C. T., Sposito, G., & Erickson, C. (1992). Vibrational probe studies of water interactions with montmorillonite. Clays and Clay Minerals, 40(6), 722–730.

    Article  Google Scholar 

  • Kang, S. M., et al. (2011). Carbon dioxide storage capacity of organic-rich shales. SPE Journal, 16(4), 1–14.

    Article  Google Scholar 

  • Kerisit, S., Weare, J. H., & Felmy, A. R. (2012). Structure and dynamics of forsterite–scCO2/H2O interfaces as a function of water content. Geochimica et Cosmochimica Acta, 84, 137–151.

    Article  Google Scholar 

  • Lackner, K. S. (2002). Carbonate chemistry for sequestering fossil carbon. Annual Review of Energy and the Environment, 27, 193–232.

    Article  Google Scholar 

  • Libowitzky, E. (1999). Correlation of O–H stretching frequencies and O–H···O hydrogen bond lengths in minerals. Monatshefte, 130(8), 1047–1059.

    Google Scholar 

  • Li, J.-R., Kuppler, R. J., & Zhou, H.-C. (2009). Selective gas adsorption and separation in metal-organic frameworks. Chemical Society Reviews, 38(5), 1477–1504.

    Article  Google Scholar 

  • Liu, Z., et al. (2005). Selective and controlled synthesis of α- and β-cobalt hydroxides in highly developed hexagonal platelets. Journal of the American Chemical Society, 127(40), 13869–13874.

    Article  Google Scholar 

  • Loring, J. S., et al. (2011). In situ infrared spectroscopic study of forsterite carbonation in wet supercritical CO2. Environmental Science and Technology, 45(14), 6204–6210.

    Article  Google Scholar 

  • Loring, J. S., et al. (2012). In situ molecular spectroscopic evidence for CO2 intercalation into montmorillonite in supercritical carbon dioxide. Langmuir, 28(18), 7125–7128.

    Article  Google Scholar 

  • Lu, J., et al. (2002). Solvatochromic characterization of near-critical water as a benign reaction medium. Industrial and Engineering Chemistry Research, 41(12), 2835–2841.

    Article  Google Scholar 

  • Lu, J., Brown, J. S., Liotta, C. L., & Eckert, C. A. (2001). Polarity and hydrogen-bonding of ambient to near-critical water: Kamlet-Taft solvent parameters. (R828130). Chemical Communications, 7, 665–666.

    Article  Google Scholar 

  • Madejová, J. (2003). FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31(1), 1–10.

    Article  Google Scholar 

  • Madejov, J., Komadel, P., & Madejová, J. (2001). Base line studies of The Clay Minerals Society source clays: Infrared methods. Clays and Clay Minerals, 49(5), 410–432.

    Google Scholar 

  • Martin, R. T. (1960). Adsorbed water on clay: A review. Clays and Clay Minerals, 9(1), 28–70.

    Article  Google Scholar 

  • Michels, L., et al. (2015). Intercalation and retention of carbon dioxide in a smectite clay promoted by interlayer cations. Scientific Reports, 5(8775), 1–9.

    MathSciNet  Google Scholar 

  • Miller, Q. R. S., et al. (2013). Insights into silicate carbonation processes in water-bearing supercritical CO2 fluids. International Journal of Greenhouse Gas Control, 15, 104–118.

    Article  Google Scholar 

  • Moore, D. M., & Reynolds, R. C., Jr. (1997). X-Ray diffraction and the identification and analysis of clay minerals (2nd ed.). New York: Oxford University Press.

    Google Scholar 

  • Mortland, M. M. (1970). Clay-organic complexes and interactions. Advances in Agronomy, 22, 75–117.

    Article  Google Scholar 

  • Mortland, M. M., & Raman, K. V. (1968). Surface acidity of smectites in relation to hydration, exchangeable cation, and structure. Clays and Clay Minerals, 16(5), 393–398.

    Article  Google Scholar 

  • Nuttall, B., Ebble, C., Drahovzal, J. A., & Bustin, R. M. (2005). Analysis of Devonian black shales in Kentucky for potential carbon dioxide sequestration and enhanced natural gas production. Kentucky Geological Survey. Lexington: University of Kentucky.

    Google Scholar 

  • Polyzopoulos, N. A., Keramidas, V. Z., & Pavlatou, A. (1986). On the limitations of the simplified Elovich equation in describing the kinetics of phosphate sorption and release from soils. European Journal of Soil Science, 37(1), 81–87.

    Article  Google Scholar 

  • Romanov, V. N. (2013). Evidence of irreversible CO2 intercalation in montmorillonite. International Journal of Greenhouse Gas Control, 14, 220–226.

    Article  Google Scholar 

  • Romanov, V. N., Ackman, T. E., Soong, Y., & Kleinman, R. L. (2009). CO2 storage in shallow underground and surface coal mines: Challenges and opportunities. Environmental Science and Technology, 43(3), 561–564.

    Article  Google Scholar 

  • Romanov, V. N., et al. (2010a). Mechanisms of CO2 interaction with expansive clay. Poster presented at the SEA-CSSJ-CMS Trilateral Meeting on Clays, Seville, Spain.

    Google Scholar 

  • Romanov, V. N., et al. (2010b). CO2 interaction with geomaterials. Paper presented at the AGU Fall Meeting (p. H11 J-01, Invited), San Francisco, CA.

    Google Scholar 

  • Romanov, V., & Soong, Y. (2008). Multi-scale modeling of carbon dioxide sequestration in unmineable coal seams. Poster presented at the 7th Annual Conference on Carbon Capture & Sequestration, Pittsburgh, PA.

    Google Scholar 

  • Romanov, V., et al. (2015). Mineralization of carbon dioxide: A literature review. ChemBioEng Reviews, 2(4), 231–256.

    Article  Google Scholar 

  • Russell, J. D., & Farmer, V. C. (1964). Infra-red spectroscopic study of the dehydration of montmorillonite and saponite. Clay Minerals Bulletin, 5(32), 443–464.

    Article  Google Scholar 

  • Schaef, H. T., et al. (2013). Forsterite [Mg2·SiO4] carbonation in wet supercritical CO2: An in situ high-pressure X-ray diffraction study. Environmental Science and Technology, 47(1), 174–181.

    Article  Google Scholar 

  • Schaef, H. T. et al. (2014a). CO2 Utilization and storage in shale gas reservoirs: Experimental results and economic impacts. Energy Procedia, 63, 7844–7851.

    Google Scholar 

  • Schaef, H. T. et al. (2014b). Surface condensation of CO2 onto Kaolinite. Environmental Science and Technology Letters, 1(2), 142–145.

    Google Scholar 

  • Seifritz, W. (1990). CO2 disposal by means of silicates. Nature, 345(6275), 486.

    Article  Google Scholar 

  • Serhatkulu, G. K., Dilek, C., & Gulari, E. (2006). Supercritical CO2 intercalation of layered silicates. Journal of Supercritical Fluids, 39(2), 264–270.

    Article  Google Scholar 

  • Shukla, R., Ranjith, P., Haque, A., & Choi, X. (2010). A review of studies on CO2 sequestration and caprock integrity. Fuel, 89(10), 2651–2664.

    Article  Google Scholar 

  • Steiner, T. (2002). The hydrogen bond in the solid state. Angewandte Chemie International Edition, 41(1), 49–76.

    Article  Google Scholar 

  • Wernet, P. et al. (2004). The structure of the first coordination shell in liquid water. Science, 304(5673), 995–999.

    Google Scholar 

  • White, W. B. (1971). Infrared characterization of water and hydroxyl ion in the basic magnesium carbonate minerals. American Mineralogist, 56(1–2), 46–53.

    Google Scholar 

  • Zhang, T., et al. (2012). Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems. Organic Geochemistry, 47, 120–131.

    Article  Google Scholar 

  • Zhang, Y., et al. (2014). Experimental investigation of CO2–CH4 displacement and dispersion in sand pack for enhanced gas recovery. Energy Procedia, 61, 393–397.

    Article  Google Scholar 

  • Zhang, Z., et al. (2006). Temperature- and pH-dependent morphology and FT-IR analysis of magnesium carbonate hydrates. Journal of Physical Chemistry B, 110(26), 12969–12973.

    Article  Google Scholar 

  • Zhao, Q., & Samulski, E. T. (2003). Supercritical CO2-mediated intercalation of PEO in clay. Macromolecules, 36(19), 6967–6969.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Hong, L., Romanov, V. (2018). Experimental Studies: Molecular Interactions at Clay Interfaces. In: Romanov, V. (eds) Greenhouse Gases and Clay Minerals. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-12661-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12661-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12660-9

  • Online ISBN: 978-3-319-12661-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics