Skip to main content

Stability Analysis of a Finite Difference Scheme for a Nonlinear Time Fractional Convection Diffusion Equation

  • Conference paper
  • First Online:
  • 1293 Accesses

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 121))

Abstract

The nonlinear time fractional convection diffusion equation (TFCDE) is obtained from a standard nonlinear convection diffusion equation by replacing the first-order time derivative with a fractional derivative (in Caputo sense) of order \(\alpha \in (0,1)\). Developing numerical methods for solving fractional partial differential equations is of increasing interest in many areas of science and engineering. In this chapter, an explicit conservative finite difference scheme for TFCDE is introduced. We find its Courant–Friedrichs–Lewy (CFL) condition and prove encouraging results regarding stability, namely, monotonicity, the total variation diminishing (TVD) property and several bounds. Illustrative numerical examples are included in order to evaluate potential uses of the new method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Acosta, C.D., Bürger, R., Mejía, C.E.: Monotone difference schemes stabilized by discrete mollification for strongly degenerate parabolic equations. Numer. Methods Partial Differ. Equat. 28, 38–62 (2012)

    Article  MATH  Google Scholar 

  2. Bürger, R., Coronel, A., Sepúlveda, M.: A semi-implicit monotone difference scheme for an initial-boundary value problem of a strongly degenerate parabolic equation modeling sedimentation-consolidation processes. Math. Comput. 75, 91–112 (2005)

    Article  Google Scholar 

  3. Chen, W., Ye, L., Sun, H.: Fractional diffusion equations by the Kansa method. Comput. Math. Appl. 59, 1614–1620 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cifani, S., Jakobsen, E.R.: Entropy solution theory for fractional degenerate convection-diffusion equations. Ann. Inst. H. Poincaré Anal. Non Linéaire. 28, 413–441 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cifani, S., Jakobsen, E.R.: On numerical methods and error estimates for degenerate fractional convection-diffusion equations. Numer. Math. 127, 447–483 (2014)

    Google Scholar 

  6. Cockburn, B., Gripenberg, G., Londen, S.-O.: On convergence to entropy solutions of a single conservation law. J. Differ. Equat. 128(1), 206–251 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dalir, M., Bashour, M. Applications of fractional calculus. Appl. Math. Sci. 4, 1021–1032 (2010)

    MATH  MathSciNet  Google Scholar 

  8. Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. 5, 1–6 (1997)

    MATH  MathSciNet  Google Scholar 

  9. Diethelm, K.: The analysis of fractional differential equations. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  10. Holden, H., Karlsen, K., Risebro, N.: On uniqueness and existence of entropy solutions of weakly coupled systems of nonlinear degenerate parabolic equations. Electron. J. Differ. Equat. 2003(46), 1–31 (2003)

    MathSciNet  Google Scholar 

  11. LeVeque, R.: Numerical methods for conservation laws, 2nd edn. Birkhäuser-Verlag, Basel (1992)

    Book  MATH  Google Scholar 

  12. Mohammadi, A., Manteghian, M., Mohammadi, A.: Numerical solution of one-dimensional advection-diffusion equation using simultaneously temporal and spatial weighted parameters. Aust. J. Basic Appl. Sci. 5, 1536–1543 (2011)

    Google Scholar 

  13. Oldham, K.B., Spanier, J.: The fractional calculus. Dover Publications, Mineola (2006)

    Google Scholar 

  14. Pierantozzi, T.: Estudio de generalizaciones fraccionarias de las ecuaciones estándar de difusión y de ondas. Universidad Complutense de Madrid, Servicio de Publicaciones, Madrid (2007)

    Google Scholar 

  15. Podlubny, I.: Fractional differential equations. Academic, San Diego (1999)

    MATH  Google Scholar 

  16. Shen, S., Liu, F., Anh, V., Turner, I.: Detailed analysis of a conservative difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput. 22, 1–19 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Shen, S., Liu, F., Chen, J., Turner, I., Anh, V.: Numerical techniques for the variable order time fractional diffusion equation. Appl. Math. Comput. 218, 10861–10870 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgment

CDA and CEM acknowledge support by Universidad Nacional de Colombia through the project Mathematics and Computation, Hermes code 20305. CDA and PAA acknowledge support by COLCIENCIAS through the project Programa jóvenes investigadores e innovadores 2012 (contrato 566), Hermes code 16243. CEM acknowledge support by Universidad Nacional de Colombia through the project Fortalecimiento del grupo de computación científica, Hermes code 16084.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos D. Acosta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Acosta, C., Amador, P., Mejía, C. (2015). Stability Analysis of a Finite Difference Scheme for a Nonlinear Time Fractional Convection Diffusion Equation. In: Tost, G., Vasilieva, O. (eds) Analysis, Modelling, Optimization, and Numerical Techniques. Springer Proceedings in Mathematics & Statistics, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-319-12583-1_10

Download citation

Publish with us

Policies and ethics