Skip to main content

Polymers in Drug Delivery: Fundamentals

  • Chapter
  • First Online:
Advanced Polymers in Medicine

Abstract

Drug delivery has experienced an outstanding advance in the last few decades. Two key elements have contributed in a large extent to such a progress: the better knowledge of the physio/pathological environments through which the drugs have to pass through to reach their targets, and the development of novel excipients that actively participate in the accomplishment of the aimed delivery. In this context polymers occupy an outstanding position due to the versatility of the synthesis routes and the possibility of tuning their features and performances to fulfill the needs of every particular application. Polymers can finely regulate the site and the rate at which the drug is released from the formulation, improve drug solubility, contribute to the stability in the physiological environment, and help the drug to overcome cellular barriers, facilitating the contact with the therapeutic diana. This Chapter reviews the role of polymers on the evolution of drug delivery systems and the current performances they are expected to play in improving the efficiency and safety of the treatments with both old and novel active pharmaceutical ingredients (APIs). An analysis of how polymers themselves are contributing to optimize classical methods of preparing drugs dosage forms and to envision advanced drug nanocarriers is also included. Whenever possible, the information was organized trying to offer structure-property-functionality relationships, with examples of commercially available materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC:

ATP binding cassette

API:

Active pharmaceutical ingredient

ATP:

Adenosine triphosphate

BCRP:

Breast cancer resistant protein

CAP:

Cellulose acetate phthalate

EMA:

European Medicines Agency

FDA:

US Food and Drug Administration

HLB:

Hydrophilic-lipophilic balance

HPC:

Hydroxypropylcellulose

HPMC:

Hydroxypropyl methylcellulose

MCC:

Microcrystalline cellulose

MRP:

Multidrug resistant proteins

P-gp:

P-glycoprotein

PAA:

Poly(acrylic acid)

PAMAM:

Polyamidoamine

PCL:

Poly-ε-caprolactone

PEI:

Polyethyleneimine

PEO:

Poly(ethylene oxide)

PGA:

Poly(glycolic acid)

PLA:

Poly(lactic acid)

PLGA:

Polylactic-co-glycolic acid

PPO:

Poly(propylene oxide)

PVP:

Polyvinylpyrrolidone

ROS:

Reactive oxygen species

SMCC:

Silicified microcrystalline cellulose

Tg :

Glass transition temperature

References

  1. Allen, L.V., Popovich, N.G., Ansel, H.C.: Ansel’s Pharmaceutical Dosage Forms and Drug Delivery Systems. Lippincott Williams & Wilkins, Baltimore (2011). Chapter 1

    Google Scholar 

  2. Krówczynski, L.: The development of pharmaceutical technology (chronological tabulated facts). Pharmazie 40, 346 (1985)

    Google Scholar 

  3. Alvarez-Lorenzo, C., Concheiro, A.: From drug dosage forms to intelligent drug-delivery systems: a change of paradigm. In: Alvarez-Lorenzo, C., Concheiro, A. (eds.) Smart materials for drug delivery, vol. 1, p. 1. Royal Society of Chemistry Publishing, Cambridge (2013)

    Google Scholar 

  4. Dokoumetzidis, A., Macheras, P.: A century of dissolution research: from Noyes and Whitney to the biopharmaceutics classification system. Int. J. Pharm. 321, 1 (2006)

    Article  CAS  Google Scholar 

  5. Hoffman, A.S.: The origins and evolution of “controlled” drug delivery systems. J. Control. Release 18, 153 (2008)

    Article  Google Scholar 

  6. Alvarez-Lorenzo, C., Concheiro, A.: Smart drug delivery systems: from fundamentals to the clinic. Chem. Comm. 50, 7743 (2014)

    Article  CAS  Google Scholar 

  7. Hon, D.N.S.: Cellulose and its derivatives: structures, reactions and medical uses. In: Dumitriu, S. (ed.) Polysaccharides in Medicinal Applications, p. 87. Marcel Dekker, New York (1996)

    Google Scholar 

  8. Rowe, R.C., Sheskey, P.J., Cook, W.G., Fenton, M.E.: Handbook of Pharmaceutical Excipients. Pharmaceutical Press, London (2012)

    Google Scholar 

  9. Zhang, Y., Law, Y., Xhakrabarti, S.: Physical properties and compact analysis of commonly used direct compression binders. AAPS PharmSciTech 4, 489 (2003)

    Article  Google Scholar 

  10. Alvarez-Lorenzo, C., Gomez-Amoza, J.L., Martinez-Pachecho, R., Souto, C., Concheiro, A.: Evaluation of low-substituted hydroxypropylcellulose as filler-binders for direct compression. Int. J. Pharm. 197, 107 (2000)

    Article  CAS  Google Scholar 

  11. Chen, L., Li, X., Li, L., Guo, S.: Acetylated starch-based biodegradable materials with potential biomedical applications as drug delivery systems. Curr. Appl. Phys. 7(s1), 90 (2007)

    Article  Google Scholar 

  12. Rashid, I., Al Omari, M.M.H., Badwan, A.A.: From native to multifunctional starch-based excipients designed for direct compression formulation. Starch 65, 552 (2013)

    Article  CAS  Google Scholar 

  13. Lee, Y.K., Mooney, D.J.: Alginate: properties and biomedical applications. Prog. Polym. Sci. 37, 106 (2012)

    Article  CAS  Google Scholar 

  14. Pawar, S.N., Edgar, K.J.: Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 33, 3279 (2012)

    Article  CAS  Google Scholar 

  15. Tonnesen, H.H., Karlsen, J.: Alginate in drug delivery systems. Drug. Dev. Ind. Pharm. 28, 621 (2002)

    Article  CAS  Google Scholar 

  16. Coviello, T., Matricardi, P., Marianecci, C., Alhaique, F.: Polysaccharide hydrogels for modified release formulations. J. Control. Rel. 119, 5 (2007)

    Article  CAS  Google Scholar 

  17. Freile-Pelegrín, Y., Murano, E.: Agars from three species of Gracilaria (Rhodophyta) from Yucatán Peninsula. Bioresour. Technol. 96, 295 (2005)

    Article  Google Scholar 

  18. Bühler, V.: Kollidon®, polyvinylpyrrolidone excipients for the pharmaceutical industry, 9th edn. BASF, Ludwigshafen (2008)

    Google Scholar 

  19. Lubrizol.: Pharmaceutical Bulletin 1. http://www.lubrizol.com/Life-Science/Documents/Pharmaceutical/Bulletins/Bulletin-01—Polymers-for-Pharmaceutical-Applications.pdf (2011). Accessed on June 2014

  20. Danhier, F., Ansorena, E., Silva, J.M., Coco, R., Le Breton, A., Preat, V.: PLGA-based nanoparticles: an overview of biomedical applications. J. Control. Release. 161, 505 (2012)

    Article  CAS  Google Scholar 

  21. Tahara, K., Sakai, T., Yamamoto, H., Takeuchi, H., Kawashima, Y.: Establishing chitosan coated PLGA nanosphere platform loaded with wide variety of nucleic acid by complexation with cationic compound for gene delivery. Int. J. Pharm. 354, 210 (2008)

    Article  CAS  Google Scholar 

  22. Makadia, H.K., Siegel, S.J.: Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3, 1377 (2011)

    Article  CAS  Google Scholar 

  23. Woodruff, M.A., Hutmacher, D.W.: The return of a forgotten polymer—Polycaprolactone in the 21st century. Progr. Polym. Sci. 35, 1217 (2010)

    Article  CAS  Google Scholar 

  24. Joshi, S., Petereit, H.U.: Film coatings for taste masking and moisture protection. Int. J. Pharm. 457, 395 (2013)

    Article  CAS  Google Scholar 

  25. Maroni, A., Zema, L., Loreti, G., Palugan, L., Gazzaniga, A.: Film coatings for oral pulsatile release. Int. J. Pharm. 457, 362 (2013)

    Article  CAS  Google Scholar 

  26. Farag, Y., Leopold, C.S.: Development of shellac-coated sustained release pellet formulations. Eur. J. Pharm. Sci. 42, 400 (2011)

    Article  CAS  Google Scholar 

  27. Pearnchob, N., Siepmann, J., Bodmeier, R.: Pharmaceutical application of shellac: moisture-protective and taste-masking coatings and extended-release matrix tablets. Drug. Dev. Ind. Pharm. 29, 925 (2003)

    Article  CAS  Google Scholar 

  28. Felton, L.A., Porter, S.C.: An update on pharmaceutical film coating for drug delivery. Expert. Opin. Drug Del. 10, 421 (2013)

    Article  CAS  Google Scholar 

  29. Wong, T.W., Colombo, G., Sonvico, F.: Pectin matrix as oral drug delivery vehicle for colon cancer treatment. AAPS. Pharm. Sci. Tech. 12, 201 (2011)

    Article  CAS  Google Scholar 

  30. Siew, L.F., Basit, A.W., Newton, J.M.: The properties of amylose–ethylcellulose films cast from organic-based solvents as potential coatings for colonic drug delivery. Eur. J. Pharm. Sci. 11, 133 (2000)

    Article  CAS  Google Scholar 

  31. Vervoort, L., Kinget, R.: In vitro degradation by colonic bacteria of inulin HP incorporated in Eudragit films. Int. J. Pharm. 129, 185 (1996)

    Article  CAS  Google Scholar 

  32. Brøndsted, H., Andersen, C., Hovgaard, L.: Crosslinked dextran—a new capsule material for colon targeting of drugs. J. Control. Release. 53, 7 (1998)

    Article  Google Scholar 

  33. Nollenberger, K., Albers, J.: Poly(meth)acrylate-based coatings. Int. J. Pharm. 457, 461 (2013)

    Article  CAS  Google Scholar 

  34. Bühler, V.: Kollicoat grades. BASF, Ludwigshafen (2007)

    Google Scholar 

  35. Fahr, A., Liu, X.: Drug delivery strategies for poorly water-soluble drugs. Expert. Opin. Drug. Del. 4, 403 (2007)

    Article  CAS  Google Scholar 

  36. Lu, Y., Park, K.: Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int. J. Pharm. 453, 198 (2013)

    Article  CAS  Google Scholar 

  37. Chiappetta, D.A., Sosnik, A.: Poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles as drug delivery agents: improved hydrosolubility, stability and bioavailability of drugs. Eur. J. Pharm. Biopharm. 66, 303 (2007)

    Article  CAS  Google Scholar 

  38. Rangel-Yagui, C.O., Pessoa, A., Tavares, L.C.: Micellar solubilization of drugs. J. Pharm. Pharm. Sci. 8, 147 (2005)

    CAS  Google Scholar 

  39. Kwon, G.S.: Polymeric micelles for delivery of poorly water-soluble compounds. Crit. Rev. Ther. Drug Carrier Syst. 20, 357 (2003)

    Article  CAS  Google Scholar 

  40. Kabanov, K.V., Batrakova, E.V., Alakhov, V.Y.: Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J. Control. Release. 82, 189 (2002)

    Article  CAS  Google Scholar 

  41. Alvarez-Lorenzo, C., Rey-Rico, A., Sosnik, A., Taboada, P., Concheiro, A.: Poloxamine-based nanomaterials for drug delivery. Front. Biosci. (Elite edition) 2, 424 (2010)

    Article  Google Scholar 

  42. Dumortier, G., Groissord, J.L., Agnely, F., Chaumeil, J.C.: A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm. Res. 211, 2709 (2006)

    Article  Google Scholar 

  43. Linn, M., Collnot, E.M., Djuric, D., Hempel, K., Fabian, E., Kolter, K., Lehr, C.M.: Soluplus® as an effective absorption enhancer of poorly soluble drugs in vitro and in vivo. Eur. J. Pharm. Sci. 45, 336 (2012)

    Article  CAS  Google Scholar 

  44. Cespi, M., Casettari, L., Palmieri, G.F., Perinelli, D.R., Bonacucina, G.: Rheological characterization of polyvinyl caprolactam–polyvinyl acetate–polyethylene glycol graft copolymer (Soluplus®) water dispersions. Colloid. Polym. Sci. 292, 235 (2014)

    Article  CAS  Google Scholar 

  45. Shamma, R.N., Basha, M.: Soluplus®: A novel polymeric solubilizer for optimization of Carvedilol solid dispersions: formulation design and effect of method of preparation. Powder Technol. 237, 406 (2013)

    Article  CAS  Google Scholar 

  46. Vo, C.L.N., Park, C., Lee, B.J.: Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur. J. Pharm. Biopharm. 85, 799 (2013)

    Article  CAS  Google Scholar 

  47. Serajuddin, A.T.M.: Solid dispersion of poorly water-soluble drugs: Early promises, subsequent problems, and recent breakthroughs. J. Pharm. Sci. 88, 1058 (1999)

    Article  CAS  Google Scholar 

  48. Kumar, S., Gupta, S.K.: Pharmaceutical solid dispersion technology: a strategy to improve dissolution of poorly water-soluble drugs. Recent. Pat. Drug. Deliv. Formul. 7, 111 (2013)

    Article  CAS  Google Scholar 

  49. Wilson, M., Williams, M.A., Jones, D.S., Andrews, G.P.: Hot-melt extrusion technology and pharmaceutical application. Ther. Deliv. 3, 787 (2012)

    Article  CAS  Google Scholar 

  50. Leuner, C., Dressman, J.: Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. 50, 47 (2000)

    Article  CAS  Google Scholar 

  51. Janssens, S., van den Mooter, G.: Review: physical chemistry of solid dispersions. J. Pharm. Pharmacol. 61, 1571 (2009)

    Article  CAS  Google Scholar 

  52. Hardung, H., Djuric, D., Shaukat, A.: Combining HME & solubilization: Soluplus®-the solid solution. Drug. Deliv. Tech. 10, 3 (2010)

    Google Scholar 

  53. Ravina-Eirin, E., Gomez-Amoza, L., Martinez-Pacheco, R.: Utility of the hyperbranched polymer hybrane S1200 for production of instant-release particles by hot melt extrusion. Drug. Dev. Ind. Pharm. 39, 1107 (2013)

    Article  CAS  Google Scholar 

  54. Deli, M.A.: Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery. Biochim. Biophys. Acta 1788, 892 (2009)

    Article  CAS  Google Scholar 

  55. Illum, L.: Chitosan and its use as a pharmaceutical excipient. Pharm. Res. 15, 1326 (1998)

    Article  CAS  Google Scholar 

  56. Smith, J., Wood, E., Dornish, M.: Effect of chitosan on epithelial cell tight junctions. Pharm. Res. 21, 43 (2004)

    Article  CAS  Google Scholar 

  57. Di Colo, G., Zambito, Y., Zaino, C.: Polymeric enhancers of mucosal epithelia permeability: synthesis, transepitheliar penetration-enhancing properties, mechanism of action, safety issues. J. Pharm. Sci. 97, 1652 (2008)

    Article  Google Scholar 

  58. Thanou, M., Nihot, M.T., Jansen, M., Verhoef, J.C., Junginger, H.E.: Mono-N-carboxymethyl chitosan (MCC), a polyampholytic chitosan derivative, enhances the intestinal absorption of low molecular weight heparin across intestinal epithelia in vitro and in vivo. J. Pharm. Sci. 90, 38 (2001)

    Article  CAS  Google Scholar 

  59. Sandri, G., Rossi, S., Bonferoni, M.C., Ferrari, F., Zambito, Y., Di Colo, G., Caramella, C.: Buccal penetration enhancement properties of N-trimethyl chitosan: influence of quaternization degree on absorption of a high molecular weight molecule. Int. J. Pharm. 297, 146 (2005)

    Article  CAS  Google Scholar 

  60. Mourya, V., Inamdar, B.: Trimethyl chitosan and its applications in drug delivery. J. Mater. Sci. Mater. Med. 20, 1057 (2009)

    Article  CAS  Google Scholar 

  61. Andrews, G.P., Laverty, T.P., Jones, D.S.: Mucoadhesive polymeric platforms for controlled drug delivery. Eur. J. Pharm. Biopharm. 71, 505 (2009)

    Article  CAS  Google Scholar 

  62. Clausen, A.E., Bernkop-Schnurch, A.: In vitro evaluation of the permeation-enhancing effect of thiolated polycarbophil. J. Pharm. Sciences. 89, 1253 (2000)

    Article  CAS  Google Scholar 

  63. Iqbal, J., Shahnaz, G., Perera, G., Hintzen, F., Sarti, F., Berkop-Schnurch, A.: Thiolated chitosan: development and in vivo evaluation of an oral delivery system for leuprolide. Eur. J. Pharm. Biopharm. 80, 85 (2012)

    Article  Google Scholar 

  64. Bernkop-Schnurch, A., Kast, C.E., Richter, M.F.: Improvement in the mucoadhesive properties of alginate by the covalent attachment of cysteine. J. Control. Release. 28, 277 (2001)

    Article  Google Scholar 

  65. Trapani, A., Palazzo, C., Contino, M., Perrone, M.G., Cioffi, N., Ditaranto, N., Colabufo, N.A., Conese, M., Trapani, G., Puglisi, G.: Mucoadhesive properties and interaction with P-glycoprotein (P-gp) of thiolated-chitosans and -glycol chitosans and corresponding parent polymers: a comparative study. Biomacromol 15, 882 (2014)

    Article  CAS  Google Scholar 

  66. Bernkop-Schnürch, A., Grabovac, V.: Polymeric efflux pump inhibitors in oral drug delivery. Am. J. Drug. Del. 4, 263 (2006)

    Article  Google Scholar 

  67. Eckford, P.D.W., Sharom, F.J.: ABC efflux pump-based resistance to chemotherapy drugs. Chem. Rev. 109, 2989 (2009)

    Article  CAS  Google Scholar 

  68. Leveque, D., Jehl, F.: P-glycoprotein and pharmacokinetics. Anticancer. Res. 15, 331 (1995)

    CAS  Google Scholar 

  69. Yokoyama, M.: Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert. Opin. Drug. Del. 7, 145 (2010)

    Article  CAS  Google Scholar 

  70. Loo, T.W., Clarke, D.M.: Recent progress in understanding the mechanism of P-glycoprotein-mediated drug efflux. J. Membrane. Biol. 206, 173 (2005)

    Article  CAS  Google Scholar 

  71. Varma, M.V., Perumal, O.P., Panchagnula, R.: Functional role of P-glycoprotein in limiting peroral drug absorption:optimizing drug delivery. Curr. Opin. Chem. Biol. 10, 367 (2006)

    Article  CAS  Google Scholar 

  72. Werle, M.: Natural and synthetic polymers as inhibitors of drug efflux pumps. Pharm. Res. 25, 500 (2008)

    Article  CAS  Google Scholar 

  73. Kabanov, A.V., Batrakova, E.V., Alakhov, V.Y.: Pluronic block copolymers for overcoming drug resistance in cancer. Adv. Drug Deliv. Rev. 54, 759 (2002)

    Article  CAS  Google Scholar 

  74. D’Emanuele, A., Jevprasesphant, R., Penny, J., Attwood, D.: The use of a dendrimer-propranolol prodrug to bypass efflux transporters and enhance oral bioavailability. J. Control. Release. 95, 447 (2004)

    Article  Google Scholar 

  75. Föger, F., Hoyer, H., Kafedjiiski, K., Thaurer, M., Bernkop-Schnürch, A.: In vivo comparison of various polymeric and low molecular mass inhibitors of intestinal P-glycoprotein. Biomaterials 27, 5855 (2006)

    Article  Google Scholar 

  76. Kabanov, A.V., Alkhov, VYu.: Pluronic® block copolymers in drug delivery: from micellar nanocontainers to biological response modifiers. Critical. Rev. Therap. Drug. Carrier. Syst. 19, 1 (2002)

    Article  CAS  Google Scholar 

  77. Cambón, A., Rey-Rico, A., Barbosa, S., Soltero, J.F.A., Yeates, S.G., Brea, J., Loza, M.I., Alvarez-Lorenzo, C., Concheiro, A., Taboada, P., Mosquera, V.: Poly(styrene oxide)-poly(ethylene oxide) block copolymers: From “classical” chemotherapeutic nanocarriers to active cell-response inducers. J. Control. Release. 167, 68 (2013)

    Article  Google Scholar 

  78. Alakhova, D.Y., Rapoport, N.Y., Batrakova, E.V., Timoshin, A.A., Li, S., Nicholls, D., Alakhov, V.Y., Kabanov, A.V.: Differential metabolic responses to pluronic in MDR and non-MDR cells: a novel pathway for chemosensitization of drug resistant cancers. J. Control. Release. 142, 89 (2010)

    Article  CAS  Google Scholar 

  79. Kan, P.L., Schätzlein, A.G., Uchegbu, I.F.: Polymers used for the delivery of genes in gene therapy. In: Uchegbu, I.F., Schätzlein, A.G. (eds.) Polymers in Drug Delivery, p. 183. CRC/Taylor and Francis, Boca Raton (2006)

    Google Scholar 

  80. Yue, Y., Wu, C.: Progress and perspectives in developing polymeric vectors for in vitro gene delivery. Biomater. Sci. 1, 152 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by MICINN (SAF2011-22771), Xunta de Galicia (CN 2012/045), and FEDER. L. Diaz-Gomez acknowledges MICINN for a FPI fellowship (BES-2012-051889).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Alvarez-Lorenzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Díaz-Gómez, L., Concheiro, A., Alvarez-Lorenzo, C. (2015). Polymers in Drug Delivery: Fundamentals. In: Puoci, F. (eds) Advanced Polymers in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-12478-0_11

Download citation

Publish with us

Policies and ethics