Skip to main content

Marine Biomaterials as Drug Delivery System for Osteoporosis and Bone Tissue Regeneration

  • Reference work entry
  • First Online:
Handbook of Bioceramics and Biocomposites
  • 3003 Accesses

Abstract

There is currently an urgent need to develop sustainable and therapeutically relevant advanced drug delivery systems to treat the prevalence of ongoing human diseases and ailments. The effectiveness of such system will depend primarily on the properties and characteristics of the carrier material. In this chapter, marine materials are investigated as potential drug delivery carriers for bone tissue engineering and in the treatment of osteoporosis. This chapter will explore the unique structures of marine materials that set it apart from its synthetic counterparts and the conversion to biocompatible calcium phosphates combined with synthetic modifications, and case studies will demonstrate the potential clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491

    Article  Google Scholar 

  2. Bruckner A (2002) Life-saving products from coral reefs. Issues Sci Technol 18(3):35

    Google Scholar 

  3. Demers C, Hamdy CR, Corsi K, Chellat F, Tabrizian M, Yahia L (2002) Natural coral exoskeleton as a bone graft substitute: a review. Biomed Mater Eng 12(1):15–35

    Google Scholar 

  4. Patat JL, Guillemin G (1989) Natural coral used as a replacement biomaterial in bone grafts. Ann Chir Plast Esthet 34(3):221–225

    Google Scholar 

  5. Roy DM, Linnehan SK (1974) Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 247(5438):220–222

    Article  Google Scholar 

  6. Chou J, Hao J, Hatoyama H, Ben-Nissan B, Milthorpe B, Otsuka M (2013) The therapeutic effect on bone mineral formation from biomimetic zinc containing tricalcium phosphate (ZnTCP) in zinc-deficient osteoporotic mice. PLoS One 8(8):e71821

    Article  Google Scholar 

  7. Chou J, Ito T, Bishop D, Otsuka M, Ben-Nissan B, Milthorpe B (2013) Controlled release of simvastatin from biomimetic beta-TCP drug delivery system. PLoS One 8(1):e54676

    Article  Google Scholar 

  8. Chou J, Ben-Nissan B, Green DW, Valenzuela SM, Kohan L (2011) Targeting and dissolution characteristics of bone forming and antibacterial drugs by harnessing the structure of microspherical shells from coral beach sand. Adv Eng Mater 13(1–2):93–99

    Article  Google Scholar 

  9. Sashiwa H, Saimoto H, Shigemasa Y, Ogawa R, Tokura S (1990) Lysozyme susceptibility of partially deacetylated chitin. Int J Biol Macromol 12(5):295–296

    Article  Google Scholar 

  10. Shigemasa Y, Saito K, Sashiwa H, Saimoto H (1994) Enzymatic degradation of chitins and partially deacetylated chitins. Int J Biol Macromol 16(1):43–49

    Article  Google Scholar 

  11. Chou J, Hao J, Hatoyama H, Ben-Nissan B, Milthorpe B, Otsuka M (2015) Effect of biomimetic zinc-containing tricalcium phosphate (Zn-TCP) on the growth and osteogenic differentiation of mesenchymal stem cells. J Tissue Eng Regen Med 9(7):852–858

    Google Scholar 

  12. Chou J, Valenzuela SM, Santos J, Bishop D, Milthorpe B, Green DW, Otsuka M, Ben-Nissan B (2014) Strontium- and magnesium-enriched biomimetic beta-TCP macrospheres with potential for bone tissue morphogenesis. J Tissue Eng Regen Med 8(10):771–778

    Google Scholar 

  13. Chou J, Valenzuela S, Green DW, Kohan L, Milthorpe B, Otsuka M et al (2014) Antibiotic delivery potential of nano- and micro-porous marine structure-derived beta-tricalcium phosphate spheres for medical applications. Nanomedicine (Lond) 9(8):1131–1139

    Article  Google Scholar 

  14. Nyan M, Sato D, Oda M, Machida T, Kobayashi H, Nakamura T et al (2007) Bone formation with the combination of simvastatin and calcium sulfate in critical-sized rat calvarial defect. J Pharmacol Sci 104(4):384–386

    Article  Google Scholar 

  15. Kishi S, Yamaguchi M (1994) Inhibitory effect of zinc compounds on osteoclast-like cell formation in mouse marrow cultures. Biochem Pharmacol 48(6):1225–1230

    Article  Google Scholar 

  16. Yamaguchi M, Oishi H, Suketa Y (1987) Stimulatory effect of zinc on bone formation in tissue culture. Biochem Pharmacol 36(22):4007–4012

    Article  Google Scholar 

  17. Ishikawa K, Miyamoto Y, Yuasa T, Ito A, Nagayama M, Suzuki K (2002) Fabrication of Zn containing apatite cement and its initial evaluation using human osteoblastic cells. Biomaterials 23(2):423–428

    Article  Google Scholar 

  18. Yamada Y, Ito A, Kojima H, Sakane M, Miyakawa S, Uemura T et al (2008) Inhibitory effect of Zn2+ in zinc-containing beta-tricalcium phosphate on resorbing activity of mature osteoclasts. J Biomed Mater Res A 84(2):344–352

    Article  Google Scholar 

  19. Luo X, Barbieri D, Davison N, Yan Y, de Bruijn JD, Yuan H (2014) Zinc in calcium phosphate mediates bone induction: in vitro and in vivo model. Acta Biomater 10(1):477–485

    Article  Google Scholar 

  20. Otsuka M, Marunaka S, Matsuda Y, Ito A, Naito H, Ichinose N et al (2003) Effect of particle size on zinc release from zinc containing tricalcium phosphate (ZnTCP) in Zn-deficient osteoporosis rats. Biomed Mater Eng 13(2):103–113

    Google Scholar 

  21. Otsuka M, Ohshita Y, Marunaka S, Matsuda Y, Ito A, Ichinose N et al (2004) Effect of controlled zinc release on bone mineral density from injectable Zn-containing beta-tricalcium phosphate suspension in zinc-deficient diseased rats. J Biomed Mater Res A 69(3):552–560

    Article  Google Scholar 

  22. Otsuka M, Oshinbe A, Legeros RZ, Tokudome Y, Ito A, Otsuka K et al (2008) Efficacy of the injectable calcium phosphate ceramics suspensions containing magnesium, zinc and fluoride on the bone mineral deficiency in ovariectomized rats. J Pharm Sci 97(1):421–432

    Article  Google Scholar 

  23. Kannan S, Goetz-Neunhoeffer F, Neubauer J, Ferreira JMF (2011) Cosubstitution of zinc and strontium in β-tricalcium phosphate: synthesis and characterization. J Am Chem Soc 94(1):230–235

    Google Scholar 

  24. Sogo Y, Sakurai T, Onuma K, Ito A (2002) The most appropriate (Ca + Zn)/P molar ratio to minimize the zinc content of ZnTCP/HAP ceramic used in the promotion of bone formation. J Biomed Mater Res 62(3):457–463

    Article  Google Scholar 

  25. Tokudome Y, Ito A, Otsuka M (2011) Effect of zinc-containing beta-tricalcium phosphate nano particles injection on jawbone mineral density and mechanical strength of osteoporosis model rats. Biol Pharm Bull 34(8):1215–1218

    Article  Google Scholar 

  26. Kawamura H, Ito A, Miyakawa S, Layrolle P, Ojima K, Ichinose N et al (2000) Stimulatory effect of zinc-releasing calcium phosphate implant on bone formation in rabbit femora. J Biomed Mater Res 50(2):184–190

    Article  Google Scholar 

  27. Yamaguchi M (2010) Role of nutritional zinc in the prevention of osteoporosis. Mol Cell Biochem 338(1–2):241–254

    Article  Google Scholar 

  28. Ito A, Kawamura H, Miyakawa S, Layrolle P, Kanzaki N, Treboux G et al (2002) Resorbability and solubility of zinc-containing tricalcium phosphate. J Biomed Mater Res 60(2):224–231

    Article  Google Scholar 

  29. Lu H, Kawazoe N, Tateishi T, Chen G, Jin X, Chang J (2010) In vitro proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells cultured with hardystonite (Ca2ZnSi 2O7) and {beta}-TCP ceramics. J Biomater Appl 25(1):39–56

    Article  Google Scholar 

  30. Stein GS, Lian JB (1993) Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr Rev 14(4):424–442

    Article  Google Scholar 

  31. Marom R, Shur I, Solomon R, Benayahu D (2005) Characterization of adhesion and differentiation markers of osteogenic marrow stromal cells. J Cell Physiol 202(1):41–48

    Article  Google Scholar 

  32. Pina S, Vieira SI, Rego P, Torres PM, da Cruz e Silva OA, da Cruz e Silva EF et al (2010) Biological responses of brushite-forming Zn- and ZnSr- substituted beta-tricalcium phosphate bone cements. Eur Cell Mater 20:162–177

    Google Scholar 

  33. Dan H, Vaquette C, Fisher AG, Hamlet SM, Xiao Y, Hutmacher DW et al (2014) The influence of cellular source on periodontal regeneration using calcium phosphate coated polycaprolactone scaffold supported cell sheets. Biomaterials 35(1):113–122

    Article  Google Scholar 

  34. Vaquette C, Fan W, Xiao Y, Hamlet S, Hutmacher DW, Ivanovski S (2012) A biphasic scaffold design combined with cell sheet technology for simultaneous regeneration of alveolar bone/periodontal ligament complex. Biomaterials 33(22):5560–5573

    Article  Google Scholar 

  35. Li Y, Ma T, Kniss DA, Lasky LC, Yang ST (2001) Effects of filtration seeding on cell density, spatial distribution, and proliferation in nonwoven fibrous matrices. Biotechnol Prog 17(5):935–944

    Article  Google Scholar 

  36. Kitagawa T, Yamaoka T, Iwase R, Murakami A (2006) Three-dimensional cell seeding and growth in radial-flow perfusion bioreactor for in vitro tissue reconstruction. Biotechnol Bioeng 93(5):947–954

    Article  Google Scholar 

  37. van den Dolder J, Bancroft GN, Sikavitsas VI, Spauwen PH, Jansen JA, Mikos AG (2003) Flow perfusion culture of marrow stromal osteoblasts in titanium fiber mesh. J Biomed Mater Res A 64(2):235–241

    Article  Google Scholar 

  38. Dunkelman NS, Zimber MP, Lebaron RG, Pavelec R, Kwan M, Purchio AF (1995) Cartilage production by rabbit articular chondrocytes on polyglycolic acid scaffolds in a closed bioreactor system. Biotechnol Bioeng 46(4):299–305

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Chou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Chou, J., Hao, J. (2016). Marine Biomaterials as Drug Delivery System for Osteoporosis and Bone Tissue Regeneration. In: Antoniac, I. (eds) Handbook of Bioceramics and Biocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-12460-5_57

Download citation

Publish with us

Policies and ethics