Skip to main content

Guided Bone Regeneration for Dental Implants

  • Reference work entry
  • First Online:
Handbook of Bioceramics and Biocomposites

Abstract

Guided bone regeneration (GBR) membranes were originally developed to promote new tissue growth within a protected volumetric defect for periodontal regeneration. The desire to promote new bone growth without resorting to grafting procedures led to the widespread use of this technique in implant surgery. The main aim is to allow ingress of bone cells to promote bone formation within the defect.

Over the last two decades, the development of the technique of guided bone regeneration (GBR) has had a significant impact on esthetic reconstruction in conjunction with implant therapy. This technique involves the use of physical barrier membranes during the healing phase in order to avoid ingrowths of undesired tissue types into a wound area.

Different practical aspects related to the use of bone graft and guided bone regeneration for dental implants will be revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fleming JE, Cornell CN, Muschler CF (2000) Bone cells and matrices in orthopedic tissue engineering. Orthop Clin North Am 31:357–374

    Google Scholar 

  2. Bauer TW, Muschler GF (2000) Bone graft materials. An overview of the basic science. Clin Orthop Relat Res 371:10–27

    Google Scholar 

  3. Urist MR (1965) Bone formation by auto-induction. Science 150:893–899

    Article  Google Scholar 

  4. Schwartz Z, Mellonig JT, Carnes DL Jr et al (1996) Ability of commercial demineralized freeze- dried bone allograft to induce new bone formation. J Periodontol 67:918–926

    Article  Google Scholar 

  5. Shigeyama A, D’Errico JA, Stone R et al (1995) Commercially prepared allograft material has biological activity in vitro. J Periodontol 66:478–487

    Article  Google Scholar 

  6. Hammerle CH, Karring T (1998) Guided bone regeneration at oral implant sites. Periodontol 2000 17:151–175

    Article  Google Scholar 

  7. Valentini P, Abensur D (1998) Histological evaluation of Bio-Oss in a two stage sinus floor elevation and implantation procedure. Clin Oral Implants Res 9:59–64

    Article  Google Scholar 

  8. Wenz B (2003) Characteristics of Bio-Oss and Bio-Gide. In: Simion M (ed) Advanced Techniques for Bone Regeneration with Bio-Oss and Bio-Gide (Maiorana C. RC Books, Milano, pp 73–81

    Google Scholar 

  9. Joyce ME, Jingushi S, Bolander ME (1990) Transforming growth factor-? in the regulation of fracture repair. Orthop Clin North Am 21:199–209

    Google Scholar 

  10. Bostrom MP, Lane JM, Berberian WS, Missri AA, Tomin E, Weiland A et al (1995) Immunolocalization and expression of bone morphogenetic protein 2 and 4 in fracture healing. J Orthop Res 13:357–367

    Article  Google Scholar 

  11. Onishi T, Ishidou Y, Nagamine T, Yone K, Imamaru T, Kato M et al (1998) Distinct and overlapping patterns of localization of bone morphogenetic protein (BMP) family members and a BMP type II receptor during fracture healing in rats. Bone 22:605–612

    Article  Google Scholar 

  12. Sakou T (1998) Bone morphogenetic proteins: from basic studies to clinical approaches. Bone 22:591–603

    Article  Google Scholar 

  13. Bourque WT, Gross M, Hall BK (1993) Expression of four growth factors during fracture repair. Int J Dev Biol 37:573–579

    Google Scholar 

  14. Nakamura T, Hara Y, Tagawa M, Tamura M, Yuge T, Fukuda H et al (1998) Recombinant human basic fibroblast growth factor accelerates fracture healing by enhancing callus remodeling in experimental dog tibial fracture. J Bone Miner Res 13:942–949

    Article  Google Scholar 

  15. Trippel SB (1998) Potential role of insulinlike growth factors in fracture healing. Clin Orthop 355S:301–313

    Article  Google Scholar 

  16. Nash TJ, Howlett CR, Martin C, Steele J, Johnson KA, Kicklin DJ (1994) Effect of platelet-derived growth factor on tibial osteotomies in rabbits. Bone 15:203–208

    Article  Google Scholar 

  17. Tuli SM, Singh AD (1978) The osteoinductive property of decalcified bone matrix: an experimental study. J Bone Joint Surg Br 60:116–123

    Google Scholar 

  18. Adkisson HD, Strauss-Schoenberger J, Gillis M, Wilkins R, Jackson M, Hruska KA (2000) A rapid quantitative bioassay of osteoinduction. J Orthop Res 18:503–511

    Article  Google Scholar 

  19. Geesink RGT, Hoefnagels NHM, Bulstra SK (1999) Osteogenic activity of OP-1 bone morphogenetic protein (BMP-7) in a human fibular defect. J Bone Joint Surg Br 81:710–718

    Article  Google Scholar 

  20. Heckman JD, Ehler W, Brooks BP, Aufdemorte TB, Lohmann CH, Morgan T et al (1999) Bone morphogenetic protein but not transforming growth factor-? enhances bone formation in canine diaphyseal nonunions implanted with a biodegradable composite polymer. J Bone Joint Surg Am 81:1717–1739

    Google Scholar 

  21. Giavaresi G, Fini M, Salvage J, Nicoli Aldini N, Giardino R, Ambrosio L, Nicolais L, Santin M (2010) Bone regeneration potential of a soybean-based filler: experimental study in a rabbit cancellous bone defects. J Mater Sci: Mater Med (2010) 21:615–626

    Google Scholar 

  22. Holmberg L, Forsgren L, Kristerson L (2008) Porous titanium granules for implant stability and bone regeneration—a case followed for 12 years. Ups J Med Sci 113(2):217–220

    Article  Google Scholar 

  23. Bystedt H, Rasmusson L (2009) Porous titanium granules used as osteoconductive material for sinus floor augmentation: a clinical pilot study. Clin Implant Dent Relat Res 11(2):101–105

    Article  Google Scholar 

  24. White E, Shors EC (1986) Biomaterial aspects of Interpore-200 porous hydroxyapatite. Dent Clin North Am 30:49–67

    Google Scholar 

  25. Ferraro JW (1979) Experimental evaluation of ceramic calcium phosphate as a substitute for bone grafts. Plast Reconstr Surg 63:634–640

    Article  Google Scholar 

  26. Chiroff RT, White EW, Weber KN, Roy DM (1975) Tissue ingrowth of replamineform implants. J Biomed Mater Res 6:29–45

    Article  Google Scholar 

  27. Knaack D, Goad ME, Aiolova M, Rey C, Tofighi A, Chakravarthy P et al (1998) Resorbable calcium phosphate bone substitute. J Biomed Mater Res 43:399–409

    Article  Google Scholar 

  28. Cornell CN, Lane JM, Chapman M, Merkow R, Seligson D, Henry S et al (1991) Multicenter trial of Collagraft as bone graft substitute. J Orthop Trauma 5:1–8

    Article  Google Scholar 

  29. Chapman MW, Bucholz R, Cornell CN (1997) Treatment of acute fractures with a collagen-calcium phosphate graft material: A randomized clinical trial. J Bone Joint Surg Am 79:495–502

    Google Scholar 

  30. Albu MG, Ghica MV, Leca M, Popa L, Borlescu C, Cremenescu E, Giurginca M, Trandafir V (2010) Doxycycline delivery from collagen matrices crosslinked with tannic acid. Mol Cryst Liq Cryst 523:97 = [669]–105 = [677]

    Google Scholar 

  31. Titorencu I, Albu MG, Giurginca M, Jinga V, Antoniac I, Trandafir V, Cotrut C, Miculescu F, Simionescu ANDM (2010) In vitro biocompatibility of human endothelial cells with collagen-doxycycline matrices. Mol Cryst Liq Cryst 523:97 = [669]–105 = [677]

    Google Scholar 

  32. Soballe K, Hansen ES, Brockstedt-Rasmussen H, Bunger C (1993) Hydroxyapatite coating converts fibrous tissue to bone around loaded implants. J Bone Joint Surg Br 75:270–278

    Google Scholar 

  33. Tisdel CL, Goldberg VM, Parr JA, Bensusan JS, Staikoff LS, Stevenson S (1994) The influence of a hydroxyapatite and tricalcium phosphate coating on bone growth into titanium fiber-metal implants. J Bone Joint Surg Am 76:159–171

    Google Scholar 

  34. Leeuwenburgh S, Layrolle P, Barrere F, de Bruijn J, Schoonman J, van Blitterswijk CA et al (2001) Osteoclastic resorption of biomimetic calcium phosphate coatings in vitro. J Biomed Mater Res 56:208–215

    Article  Google Scholar 

  35. Liu Y, Layrolle P, de Bruijn J, van Blitterswijk C, de Groot K (2001) Biomimetic coprecipitation of calcium phosphate and bovine serum on titanium alloy. J Biomed Mater Res 57:327–335

    Article  Google Scholar 

  36. Aghaloo TL, Moy PK (2007) Which hard tissue augmentation techniques are the most successful in furnishing bony support for implant placement? Int J Oral Maxillofac Implants 22:49–70

    Google Scholar 

  37. Zitzmann NU, Scharer P, Marinello CP (1999) Factors influencing the success of GBR. Smoking, timing of implant placement, implant location, bone quality and provisional restoration. J Clin Periodontol 26:673–682

    Article  Google Scholar 

  38. Cawood JL, Howell RE (1988) A classification of the edentulous jaws. Int J Oral Maxillofac Surg 17:232–236

    Article  Google Scholar 

  39. Dahlin C, Linde A, Gottlow J, Nyman S (1988) Healing of bone defects by guided tissue regeneration. Plast Reconstr Surg 81:672–676

    Article  Google Scholar 

  40. Dahlin C, Sennerby L, Lekholm U, Linde A, Nyman S (1989) Generation of new bone around titanium implants using a membrane technique: an experimental study in rabbits. Int J Oral Maxillofac Implants 4:19–25

    Google Scholar 

  41. Schenk RK, Buser D, Hardwick WR, Dahlin C (1994) Healing pattern of bone regeneration in membrane-protected defects: a histologic and histomorphometric study in the mandible of dogs. Int J Oral Maxillofac Implants 9:13–29

    Google Scholar 

  42. Buser D, Ruskin J, Higginbottom F, Hardwick R, Dahlin C, Schenk R (1995) Osseointegration of titanium implants in bone regenerated in membrane-protected defects. A histologic study in the canine mandible. Int J Oral Maxillofac Implants 10:666–681

    Google Scholar 

  43. Esposito M, Grusovin MG, Worthington HV, Coulthard P (2006) Interventions for replacing missing teeth: bone augmentation techniques for dental implant treatment. Cochrane Database Syst Rev (1):CD003607

    Google Scholar 

  44. Campbell JB, Bassett CAL (1956) The surgical application of monomolecular filters (Millipore) to bridge gaps in peripheral nerves and to prevent neuroma formation. Surg Forum 7:570–574

    Google Scholar 

  45. Lekholm U, Zarb G (1985) Patient selection and preparation. In: Tissue-integrated prostheses: osseointegration in clinical dentistry. Quintessence, Chicago, p 199

    Google Scholar 

  46. Buser D, Martin W, Belser C (2004) Optimizing esthetics for implant restorations in the anterior maxilla: anatomic and surgical considerations. Int J Oral Maxillofac Implants 19(Suppl):43–61

    Google Scholar 

  47. Tarnow DP, Magner AW, Fletcher P (1992) The effect of distance from the contact point to the crest of bone on the presence of the interproximal dental papilla. J Periodontol 63:995–996

    Article  Google Scholar 

  48. Lindhe J, Karring T (1997) Anatomy of the periodontium. In: Lindhe J, Karring T, Lang N (eds) Clinical periodontology and implant dentistry. Munskgaard, Copenhagen, pp 21–25

    Google Scholar 

  49. Williams DF (1981) Biomaterials and biocompatibility: an introduction. In: Williams DF (ed) Fundamental aspects of biocompatibility, vol 1. CRC Press, Boca Raton, p 1

    Google Scholar 

  50. Hardwick R, Scantlebury T, Sanchez R, Whitley N, Ambruster J (1994) Membrane design criteria for guided bone regeneration of the alveolar ridge. In: Buser D, Dahlin C, Schenk R (eds) Guided bone regeneration in implant dentistry. Quintessence, Chicago, pp 101–136

    Google Scholar 

  51. Stavropoulos F, Dahlin C, Ruskin JD, Johansson C (2004) A comparative study of barrier membranes as graft protectors in the treatment of localized bone defects. An experimental study in a canine model. Clin Oral Implants Res 15:435–442

    Article  Google Scholar 

  52. Carlsson GA (1967) Changes in the contour of maxillary alveolar process under immediate dentures. Acta Odontol Scand 25:45–75

    Article  Google Scholar 

  53. Nevins M, Camelo M, De Paoli S et al (2006) A study of the fate of the buccal wall of extraction sockets of teeth with prominent roots. Int J Periodontics Restorative Dent 26:19–29

    Google Scholar 

  54. Nystrom E, Ahlqvist J, Gunne J et al (2004) Ten year follow-up of onlay bone grafts and implants in severely resorbed maxillae. Int J Oral Maxillofac Surg 33:258–262

    Article  Google Scholar 

  55. Nystrom E, Ahlqvist J, Legrell PE (2002) Bone graft remodeling and implant success rate in the treatment of the severely resorbed maxilla: a 5 year longitudinal study. Int J Oral Maxillofac Surg 318:158–164

    Article  Google Scholar 

  56. Maiorana C, Beretta M, Salina S et al (2005) Reduction of autogenous bone graft resorption by means of Bio-Oss coverage: a prospective study. Int J Periodontics Restorative Dent 1:19–24

    Google Scholar 

  57. Maiorana C, Sommariva L, Brivio P, Sigurta D, Santoro F (2003) Maxillary sinus augmentation with anorganic bovine bone (Bio-Oss) and autologous platelet-rich plasma: preliminary clinical and histologic evaluations. Int J Periodontics Restorative Dent 23:227–235

    Google Scholar 

  58. Simion M, Trisi P, Piattelli A (1994) Vertical ridge augmentation using a membrane technique associated with osseointegrated implants. Int J Periodontics Restorative Dent 14:496–511

    Google Scholar 

  59. Simion M, Jovanovic S, Tinti C et al (2001) Long term evaluation of osseointegrated implants inserted at the time or after vertical ridge augmentation. A retrospective study on 123 implants with 1–5 year follow-up. Clin Oral Implants Res 12:35–45

    Article  Google Scholar 

  60. Maiorana C, Simion M (2003) Chapter 3. In: Advanced techniques for bone regeneration with Bio-Oss and Bio-Gide. RC Books, Milano, pp 41–50

    Google Scholar 

  61. Boyne PJ, James R (1980) Grafting of the maxillary sinus floor with autogenous bone marrow and bone. J Oral Surg 38:613–618

    Google Scholar 

  62. Valentini P, Abensur D, Wenz B et al (2000) Sinus grafting with porous bone mineral (Bio-Oss): a study on 15 patients. Int J Periodontics Restorative Dent 20:245–252

    Google Scholar 

  63. Valentini P, Abensur D (2003) Maxillary sinus grafting with anorganic bovine bone: a clinical report of long-term results. Int J Oral Maxillofac Implants 18:556–560

    Google Scholar 

  64. Maiorana C, Sigurta D, Mirandola A et al (2005) Bone resorption around implants placed in grafted sinuses: a clinical and radiologic follow-up after up to four years. Int J Oral Maxillofac Implants 2:261–265

    Google Scholar 

  65. Geurs NC, Wang JC, Schulman LB et al (2001) Retrospective radiographic analysis of sinus graft and implant placement procedures from the Academy of Osseointegration Consensus Conference on sinus graft. Int J Periodontics Restorative Dent 21:517–524

    Google Scholar 

  66. Haas R, Mailath G, Dortbudak O et al (1998) Bovine hydroxyapatite for maxillary sinus augmentation: analysis of interfacial bond strength of dental implants using pull-out tests. Clin Oral Implants Res 17:151–175

    Google Scholar 

  67. Maiorana C, Redemagni M, Rabagliati M et al (2000) Treatment of maxillary ridge resorption by sinus augmentation with iliac cancellous bone, anorganic bovine bone and implants: a clinical and histologic report. Int J Oral Maxillofac Implants 15:873–878

    Google Scholar 

  68. Wallace SS, Froum SJ, Cho SC et al (2005) Sinus augmentation utilizing anorganic bovine bone (Bio-Oss) with absorbable and non absorbable membranes placed over the lateral window: histomorphometric and clinical analyses. Int J Periodontics Restorative Dent 25:551–559

    Google Scholar 

  69. Hallman M, Sennerby L, Lundgren S (2002) A clinical and histologic evaluation of implant integration in the posterior maxilla after sinus floor augmentation with autogenous bone, bovine hydroxyapatite, or a 20:80 mixture. Int J Oral Maxillofac Implants 17:635–643

    Google Scholar 

  70. Santoro F, Maiorana C (2005) Chapter 5. In: Advanced osseointegration. RC Books, Milano, pp 117–124

    Google Scholar 

  71. Dressmann H (1892) Ueber Knochenplombierung bei Hohlenformigen Defekten des Knochens. Beitr Klin Chir 9:804–810

    Google Scholar 

  72. Mousset B, Benoit MA, Bouillet R, Gillard J (1993) Plaster of Paris: a carrier for antibiotics in treatment of bone infections. Acta Orthop Belg 59:239–248

    Google Scholar 

  73. Mousset B, Benoit MA, Delloye C, Bouillet R, Gillard J (1995) Biodegradable implants for potential use in bone infection: an in-vitro study of antibiotic - loaded calcium sulphate. Int Orthop 19:157–161

    Google Scholar 

  74. Peltier LF (1959) The use of plaster of Paris to fill large defects in bone. Am J Surg 97:311–315

    Article  Google Scholar 

  75. Sidqui M, Collin P, Vitte C, Forest N (1995) Osteoblast adherence and resorption activity of isolated osteoclasts on calcium sulphate hemihydrate. Biomaterials 16:1327–1332

    Article  Google Scholar 

  76. Scaduto AA, Lieberman JR (1999) Gene therapy for osteoinduction. Orthop Clin North Am 30:625–633

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mishel Weshler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Weshler, M., Antoniac, I.V. (2016). Guided Bone Regeneration for Dental Implants. In: Antoniac, I. (eds) Handbook of Bioceramics and Biocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-12460-5_52

Download citation

Publish with us

Policies and ethics