Skip to main content

Biomimetics and Marine Materials in Drug Delivery and Tissue Engineering

  • Reference work entry
  • First Online:
Handbook of Bioceramics and Biocomposites

Abstract

During the last two decades, biomimetics has provided mankind new directions for the utilization of natural organic and inorganic skeletons for novel drug delivery systems and new medical treatment approaches with unique designs ranging from the macro- to the nanoscale. The use of ready-made organic and inorganic marine skeletons has potentially created an opportunity of presenting one of the simplest cures to fundamental issues hampering the future development of regenerative medicine, dentistry, and orthopedics such as providing a richness of framework designs and devices and abundant and available sources of osteopromotive analogues and biomineralization proteins. Organic matrix and inorganic marine skeletons possess a habitat ideal for the proliferation of added mesenchymal stem cell populations and promoting clinically acceptable bone formation. It has been proven that self-sustaining musculoskeletal tissues can be supported by coral and marine sponge skeletons, and bone mineralization can be promoted by the extracts of spongin collagen and nacre seashell organic matrices. This idea is reinforced by the fact that bone morphogenetic protein molecules are produced by endodermal cells into the developing skeleton. Furthermore, the regenerative signaling proteins in bone therapeutics such as TGF and Wnt are also present in early marine sponge development and instrumental to the activation of stem cells in cnidarians. This chapter aims to give a brief background into the nature, morphology, and application of some of these structures in bone grafts, drug delivery, tissue engineering, and specific extracts such as proteins for regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ben-Nissan B, Green DW (2013) Marine materials in drug delivery and tissue engineering: from natural role models, to bone regeneration and repair and slow delivery of therapeutic drugs, proteins and genes. In: Kim S-K (ed) Marine biomaterials. Taylor and Francis/CSR Books, Boca Raton, pp 575–602

    Chapter  Google Scholar 

  2. Green DW, Li G, Milthrope B, Ben-Nissan B (2012) Adult stem cell coatings using biomaterials for regenerative medicine. Mater Today 15:61–68

    Article  Google Scholar 

  3. Ben-Nissan B (2003) Natural bioceramic: from coral to bone and beyond. Curr Opin Solid State Mater Sci 7:283–288

    Article  Google Scholar 

  4. Mann S (1983) Mineralization in biological systems. Struct Bond 54:125

    Article  Google Scholar 

  5. Gonzalez-McQuire R, Green D, Walsh D et al (2005) Fabrication of hydroxyapatite sponges by dextran sulfate/amino acid templating. Biomaterials 26:6652–6656

    Article  Google Scholar 

  6. Green D, Walsh D, Yang X et al (2004) Stimulation of human bone marrow stromal cells using growth factor-encapsulated calcium carbonate porous microspheres. J Mater Chem 14:2206–2212

    Article  Google Scholar 

  7. Walsh D, Mann S (1996) Feigning nature’s sculptures. Chem Br 32:31–34

    Google Scholar 

  8. Walsh D, Boanini E, Tanaka J et al (2005) Synthesis of tri-calcium phosphate sponges by interfacial deposition and thermal transformation of self-supporting inorganic films. J Mater Chem 15:1043–1048

    Article  Google Scholar 

  9. Hall SR, Swinerd VM, Newby FN et al (2006) Fabrication of porous titania (brookite) microparticles with complex morphology by sol-gel replication of pollen grains. Chem Mater 18:598–600

    Article  Google Scholar 

  10. Green DW (2004) Bio-inspired ceramic structures: from invertebrate marine skeletons to biomimetic crystal engineering. J Aust Ceram Soc 40:1–7

    Google Scholar 

  11. Ben-Nissan B, Choi AH (2006) Sol-gel production of bioactive nanocoatings for medical applications. Part I: an introduction. Nanomedicine 1:311–319

    Article  Google Scholar 

  12. Parker AR, Martini N (2006) Structural color in animals-simple to complex optics. Opt Laser Technol 38:315–322

    Article  Google Scholar 

  13. Ben-Nissan B, Green DW (2014) Marine structures as templates for biomaterials. In: Ben-Nissan B (ed) Advances in calcium phosphate biomaterials, Springer series in biomaterials science and engineering (SSBSE). Springer, Berlin, pp 391–414

    Chapter  Google Scholar 

  14. Mock T, Samanta MP, Iverson V et al (2008) Whole-genome expression profiling of the marine diatom Thalassiosira pseudonana identifies genes involved in silicon bioprocesses. Proc Natl Acad Sci U S A 105:1579–1584

    Article  Google Scholar 

  15. Belegratis MR, Schmidt V, Nees D et al (2014) Diatom-inspired templates for 3D replication: natural diatoms versus laser written artificial diatoms. Bioinspir Biomim 9:016004

    Article  Google Scholar 

  16. Kim ES (2008) Directed evolution: a historical exploration into an evolutionary experimental system of nanobiotechnology, 1965–2006. Minerva 46:463–484

    Article  Google Scholar 

  17. Sia SK, Gillette BM, Yang GJ (2007) Synthetic tissue biology: tissue engineering meets synthetic biology. Birth Defects Res C Embryo Today 81:354–361

    Article  Google Scholar 

  18. LeGeros RZ (1993) Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater 4:65–88

    Article  Google Scholar 

  19. LeGeros RZ, Gatti AM, Kijkowska R et al (2004) Magnesium tricalcium phosphate: formation and properties. Key Eng Mater 254–256:127–130

    Article  Google Scholar 

  20. Ando J (1958) Tricalcium phosphate and its variation. Bull Chem Soc Jpn 31:196–201

    Article  Google Scholar 

  21. Roy DM, Linnehan S (1974) Hydroxyapatite formed from coral skeleton carbonate by hydrothermal exchange. Nature 247:220–222

    Article  Google Scholar 

  22. Rocha JHG, Lemos AF, Agathopoulos S et al (2005) Scaffolds for bone restoration from cuttlefish. Bone 37:850–857

    Article  Google Scholar 

  23. Martina M, Subramanyam G, Weaver JC et al (2005) Developing macroporous bicontinuous materials as scaffolds for tissue engineering. Biomaterials 26:5609–5616

    Article  Google Scholar 

  24. Townley HE, Parker AR, White-Cooper H (2008) Exploitation of diatom frustules for nanotechnology: tethering active biomolecules. Adv Funct Mater 18:369–374

    Article  Google Scholar 

  25. Boute N, Exposito JY, Boury-Esnault N et al (1996) Type IV collagen in sponges, the missing link in basement membrane ubiquity. Biol Cell 88:37–44

    Article  Google Scholar 

  26. Exposito JY, Cluzel C, Garrone R et al (2002) Evolution of collagens. Anat Rec 268:302–316

    Article  Google Scholar 

  27. Swatschek D, Schatton W, Kellermann J et al (2002) Marine sponge collagen: isolation, characterization and effects on the skin parameters surface pH, moisture and sebum. Eur J Pharm Biopharm 53:107–113

    Article  Google Scholar 

  28. Nicklas M, Schatton W, Heinemann S et al (2009) Preparation and characterization of marine sponge collagen nanoparticles and employment for the transdermal delivery of 17b-estradiol-hemihydrate. Drug Dev Ind Pharm 35:1035–1042

    Article  Google Scholar 

  29. Aizenberg J, Weaver JC, Thanawala MS et al (2005) Skeleton of Euplectella sp structural hierarchy from the nanoscale to the macroscale. Science 309:275–278

    Article  Google Scholar 

  30. Miserez A, Weaver JC, Thurner PJ et al (2008) Effects of laminate architecture on fracture resistance of sponge biosilica: lessons from nature. Adv Funct Mater 18:1241–1248

    Article  Google Scholar 

  31. Abramovitch-Gottlib L, Geresh S, Vago R (2006) Biofabricated marine hydrozoan: a bioactive crystalline material promoting ossification of mesenchymal stem cells. Tissue Eng 12:729–739

    Article  Google Scholar 

  32. Vago R, Plotquin D, Bunin A et al (2002) Hard tissue remodeling using biofabricated coralline biomaterials. J Biochem Biophys Methods 50:253–259

    Article  Google Scholar 

  33. Lopez E, Vidal B, Berland S et al (1992) Demonstration of the capacity of nacre to induce bone formation by human osteoblasts maintained in vitro. Tissue Cell 24:667–679

    Article  Google Scholar 

  34. Lamghari M, Berland S, Laurent A et al (2001) Bone reactions to nacre injected percutaneously into the vertebrae of sheep. Biomaterials 22:555–562

    Article  Google Scholar 

  35. Lamghari M, Antonietti P, Berland S et al (2001) Arthrodesis of lumbar spine transverse processes using nacre in rabbit. J Bone Miner Res 16:2232–2237

    Article  Google Scholar 

  36. Rousseau M, Lucilia PM, Almeida MJ et al (2003) The water-soluble matrix fraction from the nacre of Pinctada maxima produces earlier mineralization of MC3T3-E1 mouse pre-osteoblasts. Comp Biochem Physiol B 135:1–7

    Article  Google Scholar 

  37. Duplat D, Chabadel A, Gallet M et al (2007) The in vitro osteoclastic degradation of nacre. Biomaterials 28:2155–2162

    Article  Google Scholar 

  38. Westbroek P, Marin F (1998) A marriage of bone and nacre. Nature 392:861–862

    Article  Google Scholar 

  39. Almeida MJ, Pereira L, Milet C et al (2001) Comparative effects of nacre water-soluble matrix and dexamethasone on the alkaline phosphatase activity of MRC-5 fibroblasts. J Biomed Mater Res 57:306–312

    Article  Google Scholar 

  40. Rousseau M, Boulzaguet H, Biagianti J et al (2007) Low molecular weight molecules of oyster nacre induce mineralization of the MC3T3-E1. J Biomed Mater Res A 85:487–497

    Google Scholar 

  41. Zhang C, Li S, Ma Z et al (2006) A novel matrix protein p10 from the nacre of pearl oyster (Pinctada fucata) and its effects on both CaCO3 crystal formation and mineralogic cells. Marine Biotechnol 8:624–633

    Article  Google Scholar 

  42. Liao H, Mutvei H, Hammarstrom L et al (2002) Tissue responses to nacreous implants in rat femur: an in situ hybridization and histochemical study. Biomaterials 23:2693–2701

    Article  Google Scholar 

  43. Kim YM, Kim JJ, Kim YH et al (2000) Effects of organic matrix proteins on the interfacial structures at the bone-biocompatible nacre interface in vitro. Biomaterials 23:2089–2096

    Article  Google Scholar 

  44. Shen Y, Zhu J, Zhang H et al (2006) In vitro osteogenic activity of pearl. Biomaterials 27:281–287

    Article  Google Scholar 

  45. Green DW, Padula MP, Santos J et al (2013) A therapeutic potential for marine skeletal proteins in bone regeneration. Mar Drugs 11:1203–1220

    Article  Google Scholar 

  46. Vago R (2008) Beyond the skeleton. Cnidarian biomaterials as bioactive extracellular microenvironments for tissue engineering. Organogenesis 4:18–22

    Article  Google Scholar 

  47. Stanley G (2003) The evolution of modern corals and their early history. Earth Sci Rev 60:195–225

    Article  Google Scholar 

  48. Bonnelye E, Chabadel A, Saltel F et al (2008) Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone 42:129–138

    Article  Google Scholar 

  49. LeGeros R (1981) Apatites in biological systems. Prog Cryst Growth Charact Mater 41:1–45

    Article  Google Scholar 

  50. Papacharalambous S, Anastasoff K (1993) Natural coral skeleton used as onlay graft for contour augmentation of the face. A preliminary report. Int J Oral Maxillofac Surg 22:260–264

    Article  Google Scholar 

  51. Leupold J, Barfield W, An Y et al (2006) A comparison of ProOsteon, DBX, and collagraft in a rabbit model. J Biomed Mater Res B Appl Biomater 79:292–297

    Article  Google Scholar 

  52. Ehrlich H, Etnoyer P, Litvinov SD et al (2006) Biomaterial structure in deep-sea bamboo coral (Anthozoa: Gorgonacea: Isidiae): perspectives for the development of bone implants and templates for tissue engineering. Mater Werkst 37:552–557

    Article  Google Scholar 

  53. Chou J, Valenzuela SM, Green DW et al (2014) Antibiotic delivery potential of nano and micro porous marine structures derived β-TCP spheres for medical applications. Nanomedicine 9:1131–1138

    Article  Google Scholar 

  54. Bose S, Tarafder S (2012) Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater 8:1401–1421

    Article  Google Scholar 

  55. Nurcombe V, Cool SM (2007) Heparan sulfate control of proliferation and differentiation in the stem cell niche. Crit Rev Eukaryot Gene Expr 17:159–171

    Article  Google Scholar 

  56. Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy H. Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Choi, A.H., Cazalbou, S., Ben-Nissan, B. (2016). Biomimetics and Marine Materials in Drug Delivery and Tissue Engineering. In: Antoniac, I. (eds) Handbook of Bioceramics and Biocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-12460-5_26

Download citation

Publish with us

Policies and ethics