Skip to main content

Collagen–Bioceramic Smart Composites

  • Reference work entry
  • First Online:
Handbook of Bioceramics and Biocomposites

Abstract

Bone regeneration remains one of the most challenging issues of today. 3D scaffolds that mimic native bone have been widely used in many implantable prostheses and play a critical role in improving human health. Inspired by the composition of the natural bone, a variety of collagen-based composites reinforced with different resorbable bioceramics have been developed. To mimic the natural bone, some requirements are imposed on the collagen–bioceramic composites. This chapter focuses on collagen-based composites, starting with the main biomaterials used to obtain the composites, and the methods used for obtaining the collagen–bioceramics-type composites. Different practical aspects related to the processing and characterization of some collagen-based composites that mimic bone tissue are revealed. Also, some characteristics that proved their properties and smart composite– drug delivery systems of the collagen–bioceramic-type composites are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fernandez-Yague MA, Abbah SA, McNamara L, Zeugolis DI, Pandit A, Biggs MJ (2015) Biomimetic approaches in bone tissue engineering: integrating biological and physicomechanical strategies. Adv Drug Deliv Rev 84:1–29

    Article  Google Scholar 

  2. Miranda SCCC, Silva GAB, Hell RCR, Martins MD, Alves JB, Goes AM (2011) Three-dimensional culture of rat BMMSCs in a porous chitosan-gelatin scaffold: a promising association for bone tissue engineering in oral reconstruction. Arch Oral Biol 56(1):1–15

    Article  Google Scholar 

  3. Sowmya S, Bumgardener JD, Chennazhi KP, Nair SV, Jayakumar R (2013) Role of nanostructured biopolymers and bioceramics in enamel, dentin and periodontal tissue regeneration. Prog Polym Sci 38(s 10–11):1748–1772

    Article  Google Scholar 

  4. Haulica I (1999) Human physiology, 2nd edn. Medicala Publishing House, Bucharest

    Google Scholar 

  5. Pati F, Song TH, Rijal G, Jang J, Kim SW, Cho DW (2015) Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Biomaterials 37:230–241

    Article  Google Scholar 

  6. Kundu B, Rajkhowa R, Kundu SC, Wang X (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65(4):457–470

    Article  Google Scholar 

  7. Chen L, Hu J, Ran J, Shen X, Tong H (2014) Preparation and evaluation of collagen-silk fibroin/hydroxyapatite nanocomposites for bone tissue engineering. Int J Biol Macromol 65:1–7

    Article  Google Scholar 

  8. Pascu EI, Stokes J, McGuinness GB (2013) Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 33(8):4905–4916

    Article  Google Scholar 

  9. Rogina A (2014) Electrospinning process: versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery. Appl Surf Sci 296:221–230

    Article  Google Scholar 

  10. Wu S, Liu X, Yeung KWK, Liu C, Yang X (2014) Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng 80:1–36

    Article  Google Scholar 

  11. Venkatesan J, Bhatnagar I, Manivasagan P, Kang KH, Kim SK (2015) Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 72:269–281

    Article  Google Scholar 

  12. Maas M, Hess U, Rezwan K (2014) The contribution of rheology for designing hydroxyapatite biomaterials. Curr Opin Colloid Interface Sci 19(6):585–593

    Article  Google Scholar 

  13. Liu Y, Lim J, Teoh SH (2013) Review: development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnol Adv 31(5):688–705

    Article  Google Scholar 

  14. Lee SH, Shin H (2007) Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev 59(4–5):339–359

    Article  Google Scholar 

  15. Swetha M, Sahithi K, Moorthi A, Srinivasan N, Ramasamy K, Selvamurugan N (2010) Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol 47(1):1–4

    Article  Google Scholar 

  16. Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30(10):546–554

    Article  Google Scholar 

  17. http://www.reborne.org/

  18. Kim HJ, Kim UJ, Kim HS, Li C, Wada M, Leisk GG, Kaplan DL (2008) Bone tissue engineering with premineralized silk scaffolds. Bone 42(6):1226–1234

    Article  Google Scholar 

  19. Puppi D, Chiellini F, Piras AM, Chiellini E (2010) Polymeric materials for bone and cartilage repair. Prog Polym Sci 35(4):403–440

    Article  Google Scholar 

  20. Amruthwar SS, Janorkar AV (2013) In vitro evaluation of elastin-like polypeptide-collagen composite scaffold for bone tissue engineering. Dent Mater 29(2):211–220

    Article  Google Scholar 

  21. Fu SZ, Ni P, Wang BY, Chu BY, Zheng L, Luo F, Luo JC, Qian ZY (2012) Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration. Biomaterials 33(19):4801–4809

    Article  Google Scholar 

  22. Nadeem D, Kiamehr M, Yang X, Su B (2013) Fabrication and in vitro evaluation of a sponge-like bioactive-glass/gelatin composite scaffold for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 33(5):2669–2678

    Article  Google Scholar 

  23. Shrivats AR, McDermott MC, Hollinger JO (2014) Bone tissue engineering: state of the union. Drug Discov Today 19(6):781–786

    Article  Google Scholar 

  24. Brown JL, Kumbar SG, Laurencin CT (2013) Bone tissue engineering. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine, 3rd edn. Academic Press/Elsevier, Amsterdam, Nederland

    Google Scholar 

  25. Shrivats AR, Alvarez P, Schutte L, Hollinger JO (2014) Bone regeneration. In: Lanza R, Langer R, Vacanti J (eds) Principles of tissue engineering, 4th edn. Academic Press/Elsevier, London, UK

    Google Scholar 

  26. Bohner M (2010) Resorbable biomaterials as bone graft substitutes. Mater Today 13(1–2):24–30

    Article  Google Scholar 

  27. You Z, Bi X, Fan X, Wang Y (2012) A functional polymer designed for bone tissue engineering. Acta Biomater 8(2):502–510

    Article  Google Scholar 

  28. Venkatesan J, Pallela R, Bhatnagar I, Kim SK (2012) Chitosan-amylopectin/hydroxyapatite and chitosan-chondroitin sulphate/hydroxyapatite composite scaffolds for bone tissue engineering. Int J Biol Macromol 51(5):1033–1042

    Article  Google Scholar 

  29. Kavya KC, Jayakumar R, Nair S, Chennazhi KP (2013) Fabrication and characterization of chitosan/gelatin/nSiO2 composite scaffold for bone tissue engineering. Int J Biol Macromol 59:255–263

    Article  Google Scholar 

  30. Oryan A, Alidadi S, Moshiri A, Maffulli N (2014) Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res 9(1):18

    Article  Google Scholar 

  31. Sajesh KM, Jayakumar R, Nair SV, Chennazhi KP (2013) Biocompatible conducting chitosan/polypyrrole-alginate composite scaffold for bone tissue engineering. Int J Biol Macromol 62:465–471

    Article  Google Scholar 

  32. Pérez RA, Won JE, Knowles JC, Kim HW (2013) Naturally and synthetic smart composite biomaterials for tissue regeneration. Adv Drug Deliv Rev 65(4):471–496

    Article  Google Scholar 

  33. Fricain JC, Schlaubitz S, Le Visage C, Arnault I, Derkaoui SM, Siadous R, Catros S, Lalande C, Bareille R, Renard M, Fabre T, Cornet S, Durand M, Léonard A, Sahraoui N, Letourneur D, Amédée J (2013) A nano-hydroxyapatite – pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering. Biomaterials 34(12):2947–2959

    Article  Google Scholar 

  34. Mishra D, Bhunia B, Banerjee I, Datta P, Dhara S, Maiti TK (2011) Enzymatically crosslinked carboxymethyl–chitosan/gelatin/nano-hydroxyapatite injectable gels for in situ bone tissue engineering application. Mater Sci Eng C 31(7):1295–1304

    Article  Google Scholar 

  35. Bliley JM, Marra KG (2015) Polymeric biomaterials as tissue scaffolds. In: Vishwakarma A, Sharpe P, Songtao S, Ramalingam M (eds) Stem cell biology and tissue engineering in dental sciences. Academic Press/Elsevier, London, UK

    Google Scholar 

  36. Lian X, Liu H, Wang X, Xu S, Cui F, Bai X (2013) Antibacterial and biocompatible properties of vancomycin-loaded nano-hydroxyapatite/collagen/poly(lactic acid) bone substitute. Prog Nat Sci 23(6):549–556

    Article  Google Scholar 

  37. Simon D, Manuel S, Varma H (2013) Novel nanoporous bioceramic spheres for drug delivery application: a preliminary in vitro investigation. Oral Surg Oral Med Oral Pathol Oral Radiol 115(3):e7–e14

    Article  Google Scholar 

  38. Kucharska M, Butruk B, Walenko K, Brynk T, Ciach T (2012) Fabrication of in-situ foamed chitosan/β-TCP scaffolds for bone tissue engineering application. Mater Lett 85:124–127

    Article  Google Scholar 

  39. Bellucci D, Sola A, Gazzarri M, Chiellini F, Cannillo V (2013) A new hydroxyapatite-based biocomposite for bone replacement. Mater Sci Eng C Mater Biol Appl 33(3):1091–1101

    Article  Google Scholar 

  40. Tian B, Tang S, Wang CD, Wang WG, Wu CL, Guo YJ, Guo YP, Zhu ZA (2014) Bactericidal properties and biocompatibility of a gentamicin-loaded Fe3O4/carbonated hydroxyapatite coating. Colloid Surface B 123:403–412

    Article  Google Scholar 

  41. Wahl DA, Czernuszka JT (2006) Collagen-hydroxyapatite composites for hard tissue repair. Eur Cell Mater 11:43–56

    Google Scholar 

  42. Albu MG (2011) Collagen gels and matrices for biomedical applications. Lambert Academic Publishing, Saarbrücken

    Google Scholar 

  43. Albu MG, Titorencu I, Ghica MV (2011) Collagen-based drug delivery systems for tissue engineering. In: Pignatello R (ed) Biomaterials applications for nanomedicine. Intech Open Access Publisher, Rijeka

    Google Scholar 

  44. Ghica MV, Albu MG, Leca M, Popa L, Moisescu S (2011) Design and optimization of some collagen-minocycline based hydrogels potentially applicable for the treatment of cutaneous wounds infections. Pharmazie 66(11):853–861

    Google Scholar 

  45. Ghica MV, Albu MG, Popa L, Moisescu S (2013) Response surface methodology and Taguchi approach to assess the combined effect of formulation factors on minocycline delivery from collagen sponges. Pharmazie 68(5):340–348

    Google Scholar 

  46. Oliveira SM, Ringshia RA, Legeros RZ, Clark E, Yost MJ, Terracio L, Teixeira CC (2010) An improved collagen scaffold for skeletal regeneration. J Biomed Mater Res Part A 94(2):371–379

    Google Scholar 

  47. Zhou CC, Ye XJ, Fan YJ, Qing FZ, Chen HJ, Zhang XD (2014) Synthesis and characterization of CaP/Col composite scaffolds for load-bearing bone tissue engineering. Composites 62:242–248

    Article  Google Scholar 

  48. Asran AS, Henning S, Michler GH (2010) Polyvinyl alcohol–collagen–hydroxyapatite biocomposite nanofibrous scaffold: mimicking the key features of natural bone at the nanoscale level. Polymer 51(4):868–876

    Article  Google Scholar 

  49. Bose S, Tarafder S (2012) Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater 8(4):1401–1421

    Article  Google Scholar 

  50. Coelho JF, Ferreira PC, Alves P, Cordeiro R, Fonseca AC, Gois JR, Gil MH (2010) Drug delivery systems: advanced technologies potentially applicable in personalized treatments. EPMA J 1(1):164–209

    Article  Google Scholar 

  51. Liu C, Shen SZ, Han Z (2011) Surface wettability and chemistry of ozone perfusion processed porous collagen scaffold. J Bionic Eng 8(3):223–233

    Article  Google Scholar 

  52. Zhang L, Li K, Xiao W, Zheng L, Xiao Y, Fan H, Zhang X (2011) Preparation of collagen–chondroitin sulfate-hyaluronic acid hybrid hydrogel scaffolds and cell compatibility in vitro. Carbohydr Polym 84(1):118–125

    Article  Google Scholar 

  53. Glowacki J, Mizuno S (2008) Collagen scaffolds for tissue engineering. Biopolymers 89(5):338–344

    Article  Google Scholar 

  54. Friess W (1998) Collagen-biomaterial for drug delivery. Eur J Pharm Biopharm 45(2):113–136

    Article  Google Scholar 

  55. Wang W, Shi DL, Lian J, Guo Y, Liu G, Wang L, Ewing RC (2006) Luminescent hydroxylapatite nanoparticles by surface functionalization. Appl Phys Lett 89(18):183106

    Article  Google Scholar 

  56. Ginebra MP, Traykova T, Planell JA (2006) Calcium phosphate cements as bone drug delivery systems: a review. J Control Release 113(2):102–110

    Article  Google Scholar 

  57. Gu L, He X, Wu Z (2014) Mesoporous hydroxyapatite: preparation, drug adsorption, and release properties. Mater Chem Phys 148(s1–2):153–158

    Article  Google Scholar 

  58. Cao T, Tang W, Zhao J, Qin L, Lan C (2014) A novel drug delivery carrier based on α-eleostearic acid grafted hydroxyapatite composite. J Bionic Eng 11(1):125–133

    Article  Google Scholar 

  59. Gentile P, Bellucci D, Sola A, Mattu C, Cannillo V, Ciardelli G (2015) Composite scaffolds for controlled drug release: role of the polyurethane nanoparticles on the physical properties and cell behaviour. J Mech Behav Biomed Mater 44:53–60

    Article  Google Scholar 

  60. Vozzi G, Corallo C, Carta S, Fortina M, Gattazzo F, Galletti M, Giordano N (2014) Collagen-gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: in vitro evidences. J Biomed Mater Res A 102(5):1415–1421

    Article  Google Scholar 

  61. Gleeson JP, Plunkett NA, O’Brien FJ (2010) Addition of hydroxyapatite improves stiffness, interconnectivity and osteogenic potential of a highly porous collagen-based scaffold for bone tissue regeneration. Eur Cell Mater 20:218–230

    Google Scholar 

  62. Liao S, Watari F, Zhu Y, Uo M, Akasaka T, Wang W, Xu G, Cui F (2007) The degradation of the three layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane in vitro. Dent Mater 23(9):1120–1128

    Article  Google Scholar 

  63. Huang J, Best S (2014) Ceramic biomaterials for tissue engineering. In: Boccaccini AR, Ma PX (eds) Tissue engineering using ceramics and polymers, 2nd edn. Woodhead Publishing/Elsevier, Burlington, UK

    Google Scholar 

  64. Mallick KK, Winnett J (2014) 3D bioceramic foams for bone tissue engineering. In: Mallick K (ed) Bone substitute biomaterials. Woodhead Publishing/Elsevier, Cambridge, UK

    Google Scholar 

  65. Yamamuro T (2004) Bioceramics. In: Poitout DG (ed) Biomechanics and biomaterials in orthopedics. Springer, London, UK

    Google Scholar 

  66. Bose S, Tarafder S, Bandyopadhyay A (2015) Hydroxyapatite coatings for metallic implants. In: Hydroxyapatite (Hap) for biomedical applications. Woodhead Publishing/Elsevier, Cambridge, UK

    Google Scholar 

  67. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431

    Article  Google Scholar 

  68. Zhou CC, Ye XJ, Fan YJ, Qing FZ, Chen HJ, Zhang XD (2014) Synthesis and characterization of CaP/Col composite scaffolds for load-bearing bone tissue engineering. Compos B: Eng 62:242–248

    Article  Google Scholar 

  69. Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295(5557):1014–1017

    Article  Google Scholar 

  70. Yu XZ, Cai S, Xu GH, Zhou W, Wang DM (2009) Low temperature fabrication of high strength porous calcium phosphate and the evaluation of the osteoconductivity. J Mater Sci Mater Med 20(10):2025–2034

    Article  Google Scholar 

  71. Aoki H (1991) Science and medical applications of hydroxyapatite. JAAS, Tokyo

    Google Scholar 

  72. Bose S, Saha SK (2003) Synthesis and characterization of hydroxyapatite nanopowders by emulsion technique. Chem Mater 15:4464–4469

    Article  Google Scholar 

  73. Rahaman MN (2014) Bioactive ceramics and glasses for tissue engineering. In: Boccaccini AR, Ma PX (eds) Tissue engineering using ceramics and polymers, 2nd edn. Woodhead Publishing/Elsevier, Burlington, UK

    Google Scholar 

  74. LeGeros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 395:81–98

    Article  Google Scholar 

  75. Agrawal K, Singh G, Puri D, Prakash S (2011) Synthesis and characterization of hydroxyapatite powder by sol–gel method for biomedical application. J Min Mater Charact Eng 10(8):727–734

    Google Scholar 

  76. Arahira T, Matsuya S, Todo M (2015) Development and characterization of a novel porous β-TCP scaffold with a three-dimensional PLLA network structure for use in bone tissue engineering. Mater Lett 152:148–150

    Article  Google Scholar 

  77. Algul D, Sipahi H, Aydin A, Kelleci F, Ozdatli S, Yener FG (2015) Biocompatibility of biomimetic multilayered alginate–chitosan/β-TCP scaffold for osteochondral tissue. Int J Biol Macromol 79:363–369

    Article  Google Scholar 

  78. Hench LL, Andersson OH (1993) Bioactive glasses. In: Hench LL, Wilson J (eds) An introduction to bioceramics. World Scientific, Singapore

    Chapter  Google Scholar 

  79. Kokubo T (1991) Bioactive glass ceramics: properties and applications. Biomaterials 12:155–163

    Article  Google Scholar 

  80. Heikkib JT, Aho AJ, Kangasniemi I, Yli-Urpo A (1996) Polymethylmethacrylate composites: disturbed bone formation at the surface of bioactive glass and hydroxyapatite. Biomaterials 17:1755–1760

    Article  Google Scholar 

  81. Kokubo T, Ito S, Sakka S, Yamamuro T (1986) Formation of a high-strength bioactive glass-ceramic in the system MgO-CaO-SiO2-P2O5. J Mater Sci 21:536–540

    Article  Google Scholar 

  82. Dorozhkin SV (2011) Medical application of calcium orthophosphate bioceramics. BIO 1:1–51

    Article  Google Scholar 

  83. Ramachandran GN (1967) Structure of collagen at the molecular level. In: Ramachandran GN (ed) Treatise on collagen. Academic, London

    Google Scholar 

  84. Prockop DJ, Kivirikko KI (1995) Collagens: molecular biology, diseases, and potential for therapy. Annu Rev Biochem 64:403–434

    Article  Google Scholar 

  85. Uitto J, Pulkkinen L, Chu ML (1999) Collagen. In: Freedberg IM (ed) Dermatology in general medicine. McGraw-Hill, New York

    Google Scholar 

  86. Trandafir V, Popescu G, Albu MG, Iovu H, Georgescu M (2007) Bioproduse pe bază de collagen. Editura Ars Docendi, Bucharest

    Google Scholar 

  87. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798

    Article  Google Scholar 

  88. Albu MG (2009) Collagen gels and matrices with different degree of hydration and quasisolid structure for biomedical applications. Doctoral thesis, University of Bucharest, Bucharest

    Google Scholar 

  89. Bhat SV (2002) Biomaterials. Kluwer, Amsterdam

    Book  Google Scholar 

  90. Fraser RDB, MacRae TP, Miller A, Suzuki E (1983) Molecular conformation and packing in collagen fibrils. J Mol Biol 167:497–521

    Article  Google Scholar 

  91. Brodsky B, Tanaka S (1988) X-ray diffraction as a tool for studying collagen structure. In: Nimni M (ed) Collagen, vol 1. CRC Press, New York

    Google Scholar 

  92. Burjanadze TV (1992) Thermodynamic substantiation of water-bridged collagen structure. Biopolymers 32:941–949

    Article  Google Scholar 

  93. Bella J, Brodsky B, Berman HN (1995) Hydration structure of a collagen peptide. Structure 3:893–906

    Article  Google Scholar 

  94. Kang AH (1972) Studies on the location of intermolecular cross-links in collagen. Isolation of a CNBr peptide containing hydroxylysinonorleucine. Biochemistry 11:1828–1835

    Article  Google Scholar 

  95. Murphy G, Docherty AJP (1988) Molecular studies on the connective tissue metalloproteinases and their inhibitor. In: Glauent AM (ed) The control of tissue damage. Elsevier, Amsterdam, Nederland

    Google Scholar 

  96. Von der Mark K (1999) Structure, biosynthesis and gene regulation of collagen in cartilage and bone. In: Dynamics of bone and cartilage, metabolism. Academic, Orlando

    Google Scholar 

  97. Myllyharju J, Kivirikko KI (2001) Collagen and collagen-related diseases. Ann Med 33:7–21

    Article  Google Scholar 

  98. Sato K, Yomogida K, Wada T, Yorihuzi T, Nishimune Y, Hosokawa N, Nagata K (2002) Type XXVI collagen, a new member of the collagen family, is specifically expressed in testis and ovary. J Biol Chem 277:37678–37684

    Article  Google Scholar 

  99. Zhao X (2011) Bioactive materials in orthopaedics. In: Zhao X, Courtney JM, Qian H (eds) Bioactive materials in medicine. Woodhead publishing series in biomaterials. Elsevier, Edinburgh, UK

    Google Scholar 

  100. Lyons FG, Gleeson JP, Partap S, Coghlan K, O’Brien FJ (2014) Novel microhydroxyapatite particles in a collagen scaffold: a bioactive bone void filler? Clin Orthop Relat Res 472(4):1318–1328

    Article  Google Scholar 

  101. Ficai A, Andronescu E, Voicu G, Ghitulica C, Ficai D (2010) The influence of collagen support and ionic species on the morphology of collagen/hydroxyapatite composite materials. Mater Charact 61(4):402–407

    Article  Google Scholar 

  102. Ficai A, Andronescu E, Voicu G, Manzu D, Ficai M (2009) Layer by layer deposition of hydroxyapatite onto the collagen matrix. Mater Sci Eng C 29(7):2217–2220

    Article  Google Scholar 

  103. Ficai A, Andronescu E, Voicu G, Ghitulica C, Vasile BS, Ficai D, Trandafir V (2010) Self-assembled collagen/hydroxyapatite composite materials. Chem Eng J 160(2):794–800

    Article  Google Scholar 

  104. Ficai M, Andronescu E, Ficai D, Voicu G, Ficai A (2010) Synthesis and characterization of COLL–PVA/HA hybrid materials with stratified morphology. Colloid Surf B: Biointerface 81(2):614–619

    Article  Google Scholar 

  105. Ficai A, Albu MG, Birsan M, Sonmez M, Ficai D, Trandafir V, Andronescu E (2013) Collagen hydrolysate based collagen/hydroxyapatite composite materials. J Mol Struct 1037:154–159

    Article  Google Scholar 

  106. Ficai A, Andronescu E, Trandafir V, Ghitulica C, Voicu G (2010) Collagen/hydroxyapatite composite obtained by electric field orientation. Mater Lett 64(4):541–544

    Article  Google Scholar 

  107. Marin S, Marin MM, Ene A-M, Türker IK, Chelaru K, Albu MG, Ghica MV (2014) Collagen-doxycycline spongious forms for infected tissues treatment. In: Proceedings of ICAMS 2014 – 5th international conference advance material systems, Bucharest, Romania, pp 249–254

    Google Scholar 

  108. Groeneveld EH, Van den Bergh JP, Holzmann P, ten Bruggenkate CM, Tuinzing DB, Burger EH (1999) Mineralization processes in demineralized bone matrix grafts in human maxillary sinus floor elevation. J Biomed Mater Res 48(4):393–402

    Article  Google Scholar 

  109. Zhang Z, Hu J, Ma PX (2012) Nanofiber-based delivery of bioactive agents and stem cells to bone sites. Adv Drug Deliv Rev 64(12):1129–1141

    Article  Google Scholar 

  110. Jain KK (2008) Drug delivery systems – an overview. Methods Mol Biol 437:1–50

    Article  Google Scholar 

  111. Manzano M, Vallet-Regí M (2012) Revisiting bioceramics: bone regenerative and local drug delivery systems. Prog Solid State Chem 40(3):17–30

    Article  Google Scholar 

  112. Arcos D, Vallet-Regí M (2013) Bioceramics for drug delivery. Acta Mater 61(3):890–911

    Article  Google Scholar 

  113. Hesaraki S, Moztarzadeh F, Nezafati N (2009) Evaluation of a bioceramic-based nanocomposite material for controlled delivery of a non-steroidal anti-inflammatory drug. Med Eng Phys 31(10):1205–1213

    Article  Google Scholar 

  114. Peel T, May D, Buising K, Thursky K, Slavin M, Choong P (2014) Infective complications following tumour endoprosthesis surgery for bone and soft tissue tumours. Eur J Surg Oncol 40(9):1087–1094

    Article  Google Scholar 

  115. Ordikhani F, Simchi A (2014) Long-term antibiotic delivery by chitosan-based composite coatings with bone regenerative potential. Appl Surf Sci 317:56–66

    Article  Google Scholar 

  116. Zilberman M, Elsner JJ (2008) Antibiotic-eluting medical devices for various applications. J Control Release 130(3):202–215

    Article  Google Scholar 

  117. Zhang Y, Zhu J, Wang Z, Zhou Y, Zhang X (2015) Constructing a 3D-printable, bioceramic sheathed articular spacer assembly for infected hip arthroplasty. J Med Hypotheses Ideas 9(1):13–19

    Article  Google Scholar 

  118. Soundrapandian C, Mahato A, Kundu B, Datta S, Sa B, Basu D (2014) Development and effect of different bioactive silicate glass scaffolds: in vitro evaluation for use as a bone drug delivery system. J Mech Behav Biomed Mater 40:1–12

    Article  Google Scholar 

  119. Hickok NJ, Shapiro IM (2012) Immobilized antibiotics to prevent orthopaedic implant infections. Adv Drug Deliv Rev 64(12):1165–1176

    Article  Google Scholar 

  120. Emanuel N, Rosenfeld Y, Cohen O, Applbaum YH, Segal D, Barenholz Y (2012) A lipid-and-polymer-based novel local drug delivery system – BonyPid™: from physicochemical aspects to therapy of bacterially infected bones. J Control Release 160(2):353–361

    Article  Google Scholar 

  121. Campoccia D, Montanaro L, Speziale P, Arciola CR (2010) Antibiotic-loaded biomaterials and the risks for the spread of antibiotic resistance following their prophylactic and therapeutic clinical use. Biomaterials 31(25):6363–6377

    Article  Google Scholar 

  122. Stewart S, Bryant SJ, Ahn J, Hankenson KD (2015) Bone regeneration. In: Atala A, Allickson J (eds) Translational regenerative medicine. Academic Press/Elsevier, Amsterdam, Nederland

    Google Scholar 

  123. Hake ME, Young H, Hak DJ, Stahel PF, Hammerberg EM, Mauffrey C (2015) Local antibiotic therapy strategies in orthopaedic trauma: practical tips and tricks and review of the literature. Injury 46(8):1447–1456

    Article  Google Scholar 

  124. Nandi SK, Mukherjee P, Roy S, Kundu B, De DK, Basu D (2009) Local antibiotic delivery systems for the treatment of osteomyelitis – a review. Mater Sci Eng C 29(8):2478–2485

    Article  Google Scholar 

  125. Lian X, Mao K, Liu X, Wang X, Cui F (2015) In vivo osteogenesis of vancomycin loaded nanohydroxyapatite/collagen/calcium sulfate composite for treating infectious bone defect induced by chronic osteomyelitis. J Nanomater. article ID 261492

    Google Scholar 

  126. Moojen DJ, Hentenaar B, Charles Vogely H, Verbout AJ, Castelein RM, Dhert WJ (2008) In vitro release of antibiotics from commercial PMMA beads and articulating hip spacers. J Arthroplasty 23(8):1152–1156

    Article  Google Scholar 

  127. Tamilvanan S, Venkateshan N, Ludwig A (2008) The potential of lipid- and polymer-based drug delivery carriers for eradicating biofilm consortia on device-related nosocomial infections. J Control Release 128(1):2–22

    Article  Google Scholar 

  128. Ghica MV (2010) Physico-chemical and biopharmaceutical elements of semisolid systems with topical action. Applications to indomethacin hydrogels. Printech Publishing House, Bucharest

    Google Scholar 

  129. Fischer KE, Alemán BJ, Tao SL, Hugh Daniels R, Li EM, Bünger MD, Nagaraj G, Singh P, Zettl A, Desai TA (2009) Biomimetic nanowire coatings for next generation adhesive drug delivery systems. Nano Lett 9(2):716–720

    Article  Google Scholar 

  130. Vivero-Escoto JL, Slowing II, Wu CW, Lin VSY (2009) Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere. J Am Chem Soc 131(10):3462–3463

    Article  Google Scholar 

  131. Phaechamud T, Charoenteeraboon J (2008) Antibacterial activity and drug release of chitosan sponge containing doxycycline hyclate. AAPS Pharm Sci Tech 9(3):829–835

    Article  Google Scholar 

  132. Sung JH, Hwang MR, Kim JO, Lee JH, Kim YI, Kim JH, Chang SW, Jin SG, Kim JA, Lyoo WS, Han SS, Ku SK, Yong CS, Choi HG (2010) Gel characterisation and in vivo evaluation of minocycline-loaded wound dressing with enhanced wound healing using polyvinyl alcohol and chitosan. Int J Pharm 392(1–2):232–240

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iulian Vasile Antoniac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Antoniac, I.V., Albu, M.G., Antoniac, A., Rusu, L.C., Ghica, M.V. (2016). Collagen–Bioceramic Smart Composites. In: Antoniac, I. (eds) Handbook of Bioceramics and Biocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-12460-5_18

Download citation

Publish with us

Policies and ethics