Skip to main content

Apoptosis Pathways in Chronic Lymphocytic Leukemia: Role of the Microenvironment and Therapeutic Strategies

  • Conference paper
  • First Online:
Multi-Targeted Approach to Treatment of Cancer

Abstract

Chronic lymphocytic leukemia (CLL) is a B‐cell malignancy marked by defective apoptosis and apoptotic resistance. CLL lymphocytes accumulate in bone marrow, lymph nodes, and peripheral blood and receive survival signals through a diverse microenvironment in these body compartments. CLL microenvironment and cell interactions have been studied extensively. The microenvironment aggravates the antiapoptotic components in CLL cells and depletes the proapoptotic signaling that is essential to defending against apoptosis resistance. Ample research has been conducted to understand the involvement of apoptosis pathway proteins and the role of the microenvironment in the biology of leukemic cells. Major protein groups of the apoptosis pathway are the B‐cell lymphoma 2 (Bcl-2) family, inhibitor of apoptosis protein (IAP) family, nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NF-kB) signaling axis, tumor necrosis factor receptor superfamily (TNFRSF), B-cell receptor (BCR), death effector domain-containing proteins (DED) family, caspase activation and recruitment domain-containing proteins (CARD) family, and the caspase family. Here, we review the role of apoptosis pathway protein groups in the CLL microenvironment and strategies to counter survival signals of these groups as approaches in CLL therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281(5381):1322–1326

    CAS  PubMed  Google Scholar 

  • Antonsson B, Conti F, Ciavatta A, Montessuit S, Lewis S, Martinou I, Bernasconi L, Bernard A, Mermod JJ, Mazzei G, Maundrell K, Gambale F, Sadoul R, Martinou JC (1997) Inhibition of Bax channel-forming activity by Bcl-2. Science 277(5324):370–372

    CAS  PubMed  Google Scholar 

  • Balakrishnan K, Wierda WG, Keating MJ, Gandhi V (2008) Gossypol, a BH3 mimetic, induces apoptosis in chronic lymphocytic leukemia cells. Blood 112(5):1971–1980. doi:10.1182/blood-2007-12-126946

    CAS  PubMed Central  PubMed  Google Scholar 

  • Balakrishnan K, Burger JA, Wierda WG, Gandhi V (2009) AT-101 induces apoptosis in CLL B cells and overcomes stromal cell-mediated Mcl-1 induction and drug resistance. Blood 113(1):149–153. doi:10.1182/blood-2008-02-138560

    CAS  PubMed Central  PubMed  Google Scholar 

  • Balakrishnan K, Burger JA, Quiroga MP, Henneberg M, Ayres ML, Wierda WG, Gandhi V (2010) Influence of bone marrow stromal microenvironment on forodesine-induced responses in CLL primary cells. Blood 116(7):1083–1091. doi:10.1182/blood-2009-10-246199

    CAS  PubMed Central  PubMed  Google Scholar 

  • Balakrishnan K, Fu M, Onida F, Wierda W, Keating M, Gandhi V (2013) Role of smac-mimetic in restoring apoptosis in chronic lymphocytic leukemia. Am Assoc Cancer Re 73:3325, Abstract

    Google Scholar 

  • Baudot AD, Jeandel PY, Mouska X, Maurer U, Tartare-Deckert S, Raynaud SD, Cassuto JP, Ticchioni M, Deckert M (2009) The tyrosine kinase Syk regulates the survival of chronic lymphocytic leukemia B cells through PKCdelta and proteasome-dependent regulation of Mcl-1 expression. Oncogene 28(37):3261–3273. doi:10.1038/onc.2009.179

    CAS  PubMed  Google Scholar 

  • Bloomfield CD, Arthur DC, Frizzera G, Levine EG, Peterson BA, Gajl-Peczalska KJ (1983) Nonrandom chromosome abnormalities in lymphoma. Cancer Res 43(6):2975–2984

    CAS  PubMed  Google Scholar 

  • Bouillet P, Metcalf D, Huang DC, Tarlinton DM, Kay TW, Kontgen F, Adams JM, Strasser A (1999) Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286(5445):1735–1738

    CAS  PubMed  Google Scholar 

  • Bouillet P, Purton JF, Godfrey DI, Zhang LC, Coultas L, Puthalakath H, Pellegrini M, Cory S, Adams JM, Strasser A (2002) BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415(6874):922–926

    CAS  PubMed  Google Scholar 

  • Brown JR, Byrd JC, Coutre SE, Benson DM, Flinn IW, Wagner-Johnston ND, Spurgeon SE, Kahl BS, Bello C, Webb HK, Johnson DM, Peterman S, Li D, Jahn TM, Lannutti BJ, Ulrich RG, Yu AS, Miller LL, Furman RR (2014) Idelalisib, an inhibitor of phosphatidylinositol 3-kinase p110delta, for relapsed/refractory chronic lymphocytic leukemia. Blood 123(22):3390–3397. doi:10.1182/blood-2013-11-535047

    CAS  PubMed  Google Scholar 

  • Buchner M, Fuchs S, Prinz G, Pfeifer D, Bartholome K, Burger M, Chevalier N, Vallat L, Timmer J, Gribben JG, Jumaa H, Veelken H, Dierks C, Zirlik K (2009) Spleen tyrosine kinase is overexpressed and represents a potential therapeutic target in chronic lymphocytic leukemia. Cancer Res 69(13):5424–5432. doi:10.1158/0008-5472.CAN-08-4252

    CAS  PubMed  Google Scholar 

  • Buggins AG, Pepper C, Patten PE, Hewamana S, Gohil S, Moorhead J, Folarin N, Yallop D, Thomas NS, Mufti GJ, Fegan C, Devereux S (2010) Interaction with vascular endothelium enhances survival in primary chronic lymphocytic leukemia cells via NF-kappaB activation and de novo gene transcription. Cancer Res 70(19):7523–7533. doi:10.1158/0008-5472.CAN-10-1634

    CAS  PubMed  Google Scholar 

  • Burger JA, Tsukada N, Burger M, Zvaifler NJ, Dell’Aquila M, Kipps TJ (2000) Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood 96(8):2655–2663

    CAS  PubMed  Google Scholar 

  • Burger M, Hartmann T, Krome M, Rawluk J, Tamamura H, Fujii N, Kipps TJ, Burger JA (2005) Small peptide inhibitors of the CXCR4 chemokine receptor (CD184) antagonize the activation, migration, and antiapoptotic responses of CXCL12 in chronic lymphocytic leukemia B cells. Blood 106(5):1824–1830. doi:10.1182/blood-2004-12-4918, 2004-12-4918 [pii]

    CAS  PubMed  Google Scholar 

  • Buschle M, Campana D, Carding SR, Richard C, Hoffbrand AV, Brenner MK (1993) Interferon gamma inhibits apoptotic cell death in B cell chronic lymphocytic leukemia. J Exp Med 177(1):213–218

    CAS  PubMed  Google Scholar 

  • Buske C, Gogowski G, Schreiber K, Rave-Frank M, Hiddemann W, Wormann B (1997) Stimulation of B-chronic lymphocytic leukemia cells by murine fibroblasts, IL-4, anti-CD40 antibodies, and the soluble CD40 ligand. Exp Hematol 25(4):329–337

    CAS  PubMed  Google Scholar 

  • Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA, Grant B, Sharman JP, Coleman M, Wierda WG, Jones JA, Zhao W, Heerema NA, Johnson AJ, Sukbuntherng J, Chang BY, Clow F, Hedrick E, Buggy JJ, James DF, O’Brien S (2013) Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med 369(1):32–42. doi:10.1056/NEJMoa1215637

    CAS  PubMed Central  PubMed  Google Scholar 

  • Byrd JC, Brown JR, O’Brien S, Barrientos JC, Kay NE, Reddy NM, Coutre S, Tam CS, Mulligan SP, Jaeger U, Devereux S, Barr PM, Furman RR, Kipps TJ, Cymbalista F, Pocock C, Thornton P, Caligaris-Cappio F, Robak T, Delgado J, Schuster SJ, Montillo M, Schuh A, de Vos S, Gill D, Bloor A, Dearden C, Moreno C, Jones JJ, Chu AD, Fardis M, McGreivy J, Clow F, James DF, Hillmen P, RESONATE Investigators (2014) Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. doi:10.1056/NEJMoa1400376

    Google Scholar 

  • Caligaris-Cappio F, Hamblin TJ (1999) B-cell chronic lymphocytic leukemia: a bird of a different feather. J Clin Oncol Off J Am Soc Clin Oncol 17(1):399–408

    CAS  Google Scholar 

  • Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M, Taccioli C, Zanesi N, Garzon R, Aqeilan RI, Alder H, Volinia S, Rassenti L, Liu X, Liu CG, Kipps TJ, Negrini M, Croce CM (2008) MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci U S A 105(13):5166–5171. doi:10.1073/pnas.0800121105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chaouchi N, Wallon C, Goujard C, Tertian G, Rudent A, Caput D, Ferrera P, Minty A, Vazquez A, Delfraissy JF (1996) Interleukin-13 inhibits interleukin-2-induced proliferation and protects chronic lymphocytic leukemia B cells from in vitro apoptosis. Blood 87(3):1022–1029

    CAS  PubMed  Google Scholar 

  • Chen L, Widhopf G, Huynh L, Rassenti L, Rai KR, Weiss A, Kipps TJ (2002) Expression of ZAP-70 is associated with increased B-cell receptor signaling in chronic lymphocytic leukemia. Blood 100(13):4609–4614. doi:10.1182/blood-2002-06-1683

    CAS  PubMed  Google Scholar 

  • Cordone I, Matutes E, Catovsky D (1992) Monoclonal antibody Ki-67 identifies B and T cells in cycle in chronic lymphocytic leukemia: correlation with disease activity. Leukemia 6(9):902–906

    CAS  PubMed  Google Scholar 

  • Cragg MS, Chan HT, Fox MD, Tutt A, Smith A, Oscier DG, Hamblin TJ, Glennie MJ (2002) The alternative transcript of CD79b is overexpressed in B-CLL and inhibits signaling for apoptosis. Blood 100(9):3068–3076. doi:10.1182/blood.V100.9.3068

    CAS  PubMed  Google Scholar 

  • Cuni S, Perez-Aciego P, Perez-Chacon G, Vargas JA, Sanchez A, Martin-Saavedra FM, Ballester S, Garcia-Marco J, Jorda J, Durantez A (2004) A sustained activation of PI3K/NF-kappaB pathway is critical for the survival of chronic lymphocytic leukemia B cells. Leukemia 18(8):1391–1400. doi:10.1038/sj.leu.2403398

    CAS  PubMed  Google Scholar 

  • de la Fuente MT, Casanova B, Garcia-Gila M, Silva A, Garcia-Pardo A (1999) Fibronectin interaction with alpha4beta1 integrin prevents apoptosis in B cell chronic lymphocytic leukemia: correlation with Bcl-2 and Bax. Leukemia 13(2):266–274

    PubMed  Google Scholar 

  • de Totero D, Meazza R, Zupo S, Cutrona G, Matis S, Colombo M, Balleari E, Pierri I, Fabbi M, Capaia M, Azzarone B, Gobbi M, Ferrarini M, Ferrini S (2006) Interleukin-21 receptor (IL-21R) is up-regulated by CD40 triggering and mediates proapoptotic signals in chronic lymphocytic leukemia B cells. Blood 107(9):3708–3715. doi:10.1182/blood-2005-09-3535

    PubMed  Google Scholar 

  • Deaglio S, Vaisitti T, Bergui L, Bonello L, Horenstein AL, Tamagnone L, Boumsell L, Malavasi F (2005) CD38 and CD100 lead a network of surface receptors relaying positive signals for B-CLL growth and survival. Blood 105(8):3042–3050. doi:10.1182/blood-2004-10-3873

    CAS  PubMed  Google Scholar 

  • Decker T, Schneller F, Hipp S, Miething C, Jahn T, Duyster J, Peschel C (2002) Cell cycle progression of chronic lymphocytic leukemia cells is controlled by cyclin D2, cyclin D3, cyclin-dependent kinase (cdk) 4 and the cdk inhibitor p27. Leukemia 16(3):327–334. doi:10.1038/sj.leu.2402389

    CAS  PubMed  Google Scholar 

  • Del Gaizo Moore V, Letai A (2012) BH3 profiling – measuring integrated function of the mitochondrial apoptotic pathway to predict cell fate decisions. Cancer Lett. doi:10.1016/j.canlet.2011.12.021, S0304-3835(11)00768-3 [pii]

    PubMed  Google Scholar 

  • Deveraux QL, Takahashi R, Salvesen GS, Reed JC (1997) X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388(6639):300–304. doi:10.1038/40901

    CAS  PubMed  Google Scholar 

  • Deveraux QL, Roy N, Stennicke HR, Van Arsdale T, Zhou Q, Srinivasula SM, Alnemri ES, Salvesen GS, Reed JC (1998) IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J 17(8):2215–2223. doi:10.1093/emboj/17.8.2215

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dohner H, Stilgenbauer S, James MR, Benner A, Weilguni T, Bentz M, Fischer K, Hunstein W, Lichter P (1997) 11q deletions identify a new subset of B-cell chronic lymphocytic leukemia characterized by extensive nodal involvement and inferior prognosis. Blood 89(7):2516–2522

    CAS  PubMed  Google Scholar 

  • Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102(1):33–42

    CAS  PubMed  Google Scholar 

  • Edelmann J, Klein-Hitpass L, Carpinteiro A, Fuhrer A, Sellmann L, Stilgenbauer S, Duhrsen U, Durig J (2008) Bone marrow fibroblasts induce expression of PI3K/NF-kappaB pathway genes and a pro-angiogenic phenotype in CLL cells. Leuk Res 32(10):1565–1572. doi:10.1016/j.leukres.2008.03.003

    CAS  PubMed  Google Scholar 

  • el Rouby S, Thomas A, Costin D, Rosenberg CR, Potmesil M, Silber R, Newcomb EW (1993) p53 gene mutation in B-cell chronic lymphocytic leukemia is associated with drug resistance and is independent of MDR1/MDR3 gene expression. Blood 82(11):3452–3459

    PubMed  Google Scholar 

  • Fan Y, Dutta J, Gupta N, Fan G, Gelinas C (2008) Regulation of programmed cell death by NF-kappaB and its role in tumorigenesis and therapy. Adv Exp Med Biol 615:223–250. doi:10.1007/978-1-4020-6554-5_11

    CAS  PubMed  Google Scholar 

  • Fischer SF, Bouillet P, O’Donnell K, Light A, Tarlinton DM, Strasser A (2007) Proapoptotic BH3-only protein Bim is essential for developmentally programmed death of germinal center-derived memory B cells and antibody-forming cells. Blood 110(12):3978–3984

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fluckiger AC, Rossi JF, Bussel A, Bryon P, Banchereau J, Defrance T (1992) Responsiveness of chronic lymphocytic leukemia B cells activated via surface Igs or CD40 to B-cell tropic factors. Blood 80(12):3173–3181

    CAS  PubMed  Google Scholar 

  • Freymann JG, Burrell SB, Marler EA (1958) Role of hemolysis in anemia secondary to chronic lymphocytic leukemia and certain malignant lymphomas. N Engl J Med 259(18):847–855. doi:10.1056/NEJM195810302591801

    CAS  PubMed  Google Scholar 

  • Fulda S (2009) Inhibitor of apoptosis proteins in hematological malignancies. Leukemia 23(3):467–476. doi:10.1038/leu.2008.329

    CAS  PubMed  Google Scholar 

  • Fulda S (2012) Exploiting inhibitor of apoptosis proteins as therapeutic targets in hematological malignancies. Leukemia 26(6):1155–1165. doi:10.1038/leu.2012.4

    CAS  PubMed  Google Scholar 

  • Furman RR, Asgary Z, Mascarenhas JO, Liou HC, Schattner EJ (2000) Modulation of NF-kappa B activity and apoptosis in chronic lymphocytic leukemia B cells. J Immunol 164(4):2200–2206

    CAS  PubMed  Google Scholar 

  • Furman RR, Sharman JP, Coutre SE, Cheson BD, Pagel JM, Hillmen P, Barrientos JC, Zelenetz AD, Kipps TJ, Flinn I, Ghia P, Eradat H, Ervin T, Lamanna N, Coiffier B, Pettitt AR, Ma S, Stilgenbauer S, Cramer P, Aiello M, Johnson DM, Miller LL, Li D, Jahn TM, Dansey RD, Hallek M, O’Brien SM (2014) Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med 370(11):997–1007. doi:10.1056/NEJMoa1315226

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gahrton G, Robert KH, Friberg K, Zech L, Bird AG (1980a) Extra chromosome 12 in chronic lymphocytic leukaemia. Lancet 1(8160):146–147

    CAS  PubMed  Google Scholar 

  • Gahrton G, Robert KH, Friberg K, Zech L, Bird AG (1980b) Nonrandom chromosomal aberrations in chronic lymphocytic leukemia revealed by polyclonal B-cell-mitogen stimulation. Blood 56(4):640–647

    CAS  PubMed  Google Scholar 

  • Galton DA (1966) The pathogenesis of chronic lymphocytic leukemia. Can Med Assoc J 94(19):1005–1010

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gandhi V, Balakrishnan K, Chen LS (2008) Mcl-1: the 1 in CLL. Blood 112(9):3538–3540. doi:10.1182/blood-2008-07-170241

    CAS  PubMed  Google Scholar 

  • Ghia P, Caligaris-Cappio F (2000) The indispensable role of microenvironment in the natural history of low-grade B-cell neoplasms. Adv Cancer Res 79:157–173

    CAS  PubMed  Google Scholar 

  • Ghia P, Strola G, Granziero L, Geuna M, Guida G, Sallusto F, Ruffing N, Montagna L, Piccoli P, Chilosi M, Caligaris-Cappio F (2002) Chronic lymphocytic leukemia B cells are endowed with the capacity to attract CD4+, CD40L + T cells by producing CCL22. Eur J Immunol 32(5):1403–1413. doi:10.1002/1521-4141(200205)32:5<1403::AID-IMMU1403>3.0.CO;2-Y

    CAS  PubMed  Google Scholar 

  • Gorgun G, Ramsay AG, Holderried TA, Zahrieh D, Le Dieu R, Liu F, Quackenbush J, Croce CM, Gribben JG (2009) E(mu)-TCL1 mice represent a model for immunotherapeutic reversal of chronic lymphocytic leukemia-induced T-cell dysfunction. Proc Natl Acad Sci U S A 106(15):6250–6255. doi:10.1073/pnas.0901166106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Granziero L, Ghia P, Circosta P, Gottardi D, Strola G, Geuna M, Montagna L, Piccoli P, Chilosi M, Caligaris-Cappio F (2001) Survivin is expressed on CD40 stimulation and interfaces proliferation and apoptosis in B-cell chronic lymphocytic leukemia. Blood 97(9):2777–2783

    CAS  PubMed  Google Scholar 

  • Granziero L, Circosta P, Scielzo C, Frisaldi E, Stella S, Geuna M, Giordano S, Ghia P, Caligaris-Cappio F (2003) CD100/Plexin-B1 interactions sustain proliferation and survival of normal and leukemic CD5+ B lymphocytes. Blood 101(5):1962–1969. doi:10.1182/blood-2002-05-1339

    CAS  PubMed  Google Scholar 

  • Gricks CS, Zahrieh D, Zauls AJ, Gorgun G, Drandi D, Mauerer K, Neuberg D, Gribben JG (2004) Differential regulation of gene expression following CD40 activation of leukemic compared to healthy B cells. Blood 104(13):4002–4009. doi:10.1182/blood-2004-02-0494

    CAS  PubMed  Google Scholar 

  • Grzybowska-Izydorczyk O, Cebula B, Robak T, Smolewski P (2010) Expression and prognostic significance of the inhibitor of apoptosis protein (IAP) family and its antagonists in chronic lymphocytic leukaemia. Eur J Cancer 46(4):800–810. doi:10.1016/j.ejca.2009.11.023

    CAS  PubMed  Google Scholar 

  • Haferlach C, Dicker F, Schnittger S, Kern W, Haferlach T (2007) Comprehensive genetic characterization of CLL: a study on 506 cases analysed with chromosome banding analysis, interphase FISH, IgV(H) status and immunophenotyping. Leukemia 21(12):2442–2451. doi:10.1038/sj.leu.2404935

    CAS  PubMed  Google Scholar 

  • Hallek M, Fischer K, Fingerle-Rowson G, Fink AM, Busch R, Mayer J, Hensel M, Hopfinger G, Hess G, von Grunhagen U, Bergmann M, Catalano J, Zinzani PL, Caligaris-Cappio F, Seymour JF, Berrebi A, Jager U, Cazin B, Trneny M, Westermann A, Wendtner CM, Eichhorst BF, Staib P, Buhler A, Winkler D, Zenz T, Bottcher S, Ritgen M, Mendila M, Kneba M, Dohner H, Stilgenbauer S (2010) Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet 376(9747):1164–1174. doi:10.1016/S0140-6736(10)61381-5

    CAS  PubMed  Google Scholar 

  • Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK (1999) Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 94(6):1848–1854

    CAS  PubMed  Google Scholar 

  • Hanada M, Delia D, Aiello A, Stadtmauer E, Reed JC (1993) bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood 82(6):1820–1828

    CAS  PubMed  Google Scholar 

  • Hayes GM, Busch R, Voogt J, Siah IM, Gee TA, Hellerstein MK, Chiorazzi N, Rai KR, Murphy EJ (2010) Isolation of malignant B cells from patients with chronic lymphocytic leukemia (CLL) for analysis of cell proliferation: validation of a simplified method suitable for multi-center clinical studies. Leuk Res 34(6):809–815. doi:10.1016/j.leukres.2009.09.032 S0145-2126(09)00492-5 [pii]

    CAS  PubMed  Google Scholar 

  • Herishanu Y, Perez-Galan P, Liu D, Biancotto A, Pittaluga S, Vire B, Gibellini F, Njuguna N, Lee E, Stennett L, Raghavachari N, Liu P, McCoy JP, Raffeld M, Stetler-Stevenson M, Yuan C, Sherry R, Arthur DC, Maric I, White T, Marti GE, Munson P, Wilson WH, Wiestner A (2011) The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood 117(2):563–574. doi:10.1182/blood-2010-05-284984

    CAS  PubMed Central  PubMed  Google Scholar 

  • Herman SE, Gordon AL, Wagner AJ, Heerema NA, Zhao W, Flynn JM, Jones J, Andritsos L, Puri KD, Lannutti BJ, Giese NA, Zhang X, Wei L, Byrd JC, Johnson AJ (2010) Phosphatidylinositol 3-kinase-delta inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood 116(12):2078–2088. doi:10.1182/blood-2010-02-271171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Howlader N, Noone NA, Krapcho M, Garshell J, Neyman N, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (2012) SEER Cancer Stat Rev, 1975–2010

    Google Scholar 

  • Hui KK, Kanungo AK, Elia AJ, Henderson JT (2011) Caspase-3 deficiency reveals a physiologic role for Smac/DIABLO in regulating programmed cell death. Cell Death Differ 18(11):1780–1790. doi:10.1038/cdd.2011.50

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hundsdoerfer P, Dietrich I, Schmelz K, Eckert C, Henze G (2010) XIAP expression is post-transcriptionally upregulated in childhood ALL and is associated with glucocorticoid response in T-cell ALL. Pediatr Blood Cancer 55(2):260–266. doi:10.1002/pbc.22541

    PubMed  Google Scholar 

  • James DF, Castro JE, Loria O, Prada CE, Aguillon RA, Kipps TJ (2006) AT-101, a small molecule Bcl-2 antagonist, in treatment naïve CLL patients (pts) with high risk features; preliminary results from an ongoing phase I trial. J Clin Oncol 24(18S):6605. ASCO annual meeting proceedings

    Google Scholar 

  • Jewell AP, Yong KL (1997) Regulation and function of adhesion molecules in B-cell chronic lymphocytic leukaemia. Acta Haematol 97(1–2):67–72

    CAS  PubMed  Google Scholar 

  • Juliusson G, Robert KH, Ost A, Friberg K, Biberfeld P, Nilsson B, Zech L, Gahrton G (1985) Prognostic information from cytogenetic analysis in chronic B-lymphocytic leukemia and leukemic immunocytoma. Blood 65(1):134–141

    CAS  PubMed  Google Scholar 

  • Juliusson G, Oscier DG, Fitchett M, Ross FM, Stockdill G, Mackie MJ, Parker AC, Castoldi GL, Guneo A, Knuutila S, Elonen E, Gahrton G (1990) Prognostic subgroups in B-cell chronic lymphocytic leukemia defined by specific chromosomal abnormalities. N Engl J Med 323(11):720–724. doi:10.1056/NEJM199009133231105

    CAS  PubMed  Google Scholar 

  • Kalil N, Cheson BD (1999) Chronic lymphocytic leukemia. Oncologist 4(5):352–369

    CAS  PubMed  Google Scholar 

  • Kalil N, Cheson BD (2000) Management of chronic lymphocytic leukaemia. Drugs Aging 16(1):9–27

    CAS  PubMed  Google Scholar 

  • Kamihira S, Yamada Y, Hirakata Y, Tsuruda K, Sugahara K, Tomonaga M, Maeda T, Tsukasaki K, Atogami S, Kobayashi N (1997) Quantitative characterization and potential function of membrane Fas/APO-1 (CD95) receptors on leukaemic cells from chronic B and T lymphoid leukaemias. Br J Haematol 99(4):858–865

    CAS  PubMed  Google Scholar 

  • Kanakaraj P, Migone TS, Nardelli B, Ullrich S, Li Y, Olsen HS, Salcedo TW, Kaufman T, Cochrane E, Gan Y, Hilbert DM, Giri J (2001) BLyS binds to B cells with high affinity and induces activation of the transcription factors NF-kappaB and ELF-1. Cytokine 13(1):25–31. doi:10.1006/cyto.2000.0793

    CAS  PubMed  Google Scholar 

  • Keating MJ (2002) Management of chronic lymphocytic leukemia: a changing field. Rev Clin Exp Hematol 6(4):350–365; discussion 449–350

    CAS  PubMed  Google Scholar 

  • Keating MJ, O’Brien S, Lerner S, Koller C, Beran M, Robertson LE, Freireich EJ, Estey E, Kantarjian H (1998) Long-term follow-up of patients with chronic lymphocytic leukemia (CLL) receiving fludarabine regimens as initial therapy. Blood 92(4):1165–1171

    CAS  PubMed  Google Scholar 

  • Kern C, Cornuel JF, Billard C, Tang R, Rouillard D, Stenou V, Defrance T, Ajchenbaum-Cymbalista F, Simonin PY, Feldblum S, Kolb JP (2004) Involvement of BAFF and APRIL in the resistance to apoptosis of B-CLL through an autocrine pathway. Blood 103(2):679–688. doi:10.1182/blood-2003-02-0540

    CAS  PubMed  Google Scholar 

  • Kischkel FC, Lawrence DA, Chuntharapai A, Schow P, Kim KJ, Ashkenazi A (2000) Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 12(6):611–620

    CAS  PubMed  Google Scholar 

  • Kitada S, Reed JC (2004) MCL-1 promoter insertions dial-up aggressiveness of chronic leukemia. J Natl Cancer Inst 96(9):642–643

    PubMed  Google Scholar 

  • Kitada S, Andersen J, Akar S, Zapata JM, Takayama S, Krajewski S, Wang HG, Zhang X, Bullrich F, Croce CM, Rai K, Hines J, Reed JC (1998) Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with in vitro and in vivo chemoresponses. Blood 91(9):3379–3389

    CAS  PubMed  Google Scholar 

  • Kitada S, Zapata JM, Andreeff M, Reed JC (1999) Bryostatin and CD40-ligand enhance apoptosis resistance and induce expression of cell survival genes in B-cell chronic lymphocytic leukaemia. Br J Haematol 106(4):995–1004

    CAS  PubMed  Google Scholar 

  • Knudson CM, Tung KS, Tourtellotte WG, Brown GA, Korsmeyer SJ (1995) Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270(5233):96–99

    CAS  PubMed  Google Scholar 

  • Krober A, Seiler T, Benner A, Bullinger L, Bruckle E, Lichter P, Dohner H, Stilgenbauer S (2002) V(H) mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood 100(4):1410–1416

    CAS  PubMed  Google Scholar 

  • Kumar CC (1998) Signaling by integrin receptors. Oncogene 17(11 Reviews):1365–1373. doi:10.1038/sj.onc.1202172

    CAS  PubMed  Google Scholar 

  • Kurtova AV, Balakrishnan K, Chen R, Ding W, Schnabl S, Quiroga MP, Sivina M, Wierda WG, Estrov Z, Keating MJ, Shehata M, Jager U, Gandhi V, Kay NE, Plunkett W, Burger JA (2009) Diverse marrow stromal cells protect CLL cells from spontaneous and drug-induced apoptosis: development of a reliable and reproducible system to assess stromal cell adhesion-mediated drug resistance. Blood 114(20):4441–4450. doi:10.1182/blood-2009-07-233718

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R, Green DR, Newmeyer DD (2002) Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111(3):331–342

    CAS  PubMed  Google Scholar 

  • Lagneaux L, Delforge A, Bron D, De Bruyn C, Stryckmans P (1998) Chronic lymphocytic leukemic B cells but not normal B cells are rescued from apoptosis by contact with normal bone marrow stromal cells. Blood 91(7):2387–2396

    CAS  PubMed  Google Scholar 

  • Lannutti BJ, Meadows SA, Herman SE, Kashishian A, Steiner B, Johnson AJ, Byrd JC, Tyner JW, Loriaux MM, Deininger M, Druker BJ, Puri KD, Ulrich RG, Giese NA (2011) CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood 117(2):591–594. doi:10.1182/blood-2010-03-275305

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lazaridou A, Miraxtsi C, Korantzis J, Eleftheriadis N, Christakis JI (2000) Simultaneous detection of BCL-2 protein, trisomy 12, retinoblastoma and P53 monoallelic gene deletions in B-cell chronic lymphocytic leukemia by fluorescence in situ hybridization (FISH): relation to disease status. Leuk Lymphoma 36(5–6):503–512, I308J991142 [pii]

    CAS  PubMed  Google Scholar 

  • Letai A (2005) Pharmacological manipulation of Bcl-2 family members to control cell death. J Clin Invest 115(10):2648–2655. doi:10.1172/JCI26250

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liliemark J, Porwit A, Juliusson G (1997) Intermittent infusion of cladribine (CdA) in previously treated patients with low-grade non-Hodgkin’s lymphoma. Leuk Lymphoma 25(3–4):313–318. doi:10.3109/10428199709114170

    CAS  PubMed  Google Scholar 

  • Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104(4):487–501

    CAS  PubMed  Google Scholar 

  • Longo PG, Laurenti L, Gobessi S, Sica S, Leone G, Efremov DG (2008) The Akt/Mcl-1 pathway plays a prominent role in mediating antiapoptotic signals downstream of the B-cell receptor in chronic lymphocytic leukemia B cells. Blood 111(2):846–855. doi:10.1182/blood-2007-05-089037

    CAS  PubMed  Google Scholar 

  • Lu J, Bai L, Sun H, Nikolovska-Coleska Z, McEachern D, Qiu S, Miller RS, Yi H, Shangary S, Sun Y, Meagher JL, Stuckey JA, Wang S (2008) SM-164: a novel, bivalent Smac mimetic that induces apoptosis and tumor regression by concurrent removal of the blockade of cIAP-1/2 and XIAP. Cancer Res 68(22):9384–9393. doi:10.1158/0008-5472.CAN-08-2655

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma A, Pena JC, Chang B, Margosian E, Davidson L, Alt FW, Thompson CB (1995) Bclx regulates the survival of double-positive thymocytes. Proc Natl Acad Sci U S A 92(11):4763–4767

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mackay F, Woodcock SA, Lawton P, Ambrose C, Baetscher M, Schneider P, Tschopp J, Browning JL (1999) Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med 190(11):1697–1710

    CAS  PubMed Central  PubMed  Google Scholar 

  • McConkey DJ, Chandra J, Wright S, Plunkett W, McDonnell TJ, Reed JC, Keating M (1996) Apoptosis sensitivity in chronic lymphocytic leukemia is determined by endogenous endonuclease content and relative expression of BCL-2 and BAX. J Immunol 156(7):2624–2630

    CAS  PubMed  Google Scholar 

  • Messmer BT, Messmer D, Allen SL, Kolitz JE, Kudalkar P, Cesar D, Murphy EJ, Koduru P, Ferrarini M, Zupo S, Cutrona G, Damle RN, Wasil T, Rai KR, Hellerstein MK, Chiorazzi N (2005) In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J Clin Invest 115(3):755–764. doi:10.1172/JCI23409

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mohamed AJ, Yu L, Backesjo CM, Vargas L, Faryal R, Aints A, Christensson B, Berglof A, Vihinen M, Nore BF, Smith CI (2009) Bruton’s tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev 228(1):58–73. doi:10.1111/j.1600-065X.2008.00741.x

    CAS  PubMed  Google Scholar 

  • Molica S, Vitelli G, Levato D, Levato L, Dattilo A, Gandolfo GM (1999) Clinico-biological implications of increased serum levels of interleukin-8 in B-cell chronic lymphocytic leukemia. Haematologica 84(3):208–211

    CAS  PubMed  Google Scholar 

  • Nicoloso MS, Kipps TJ, Croce CM, Calin GA (2007) MicroRNAs in the pathogeny of chronic lymphocytic leukaemia. Br J Haematol 139(5):709–716. doi:10.1111/j.1365-2141.2007.06868.x

    CAS  PubMed  Google Scholar 

  • Novak AJ, Bram RJ, Kay NE, Jelinek DF (2002) Aberrant expression of B-lymphocyte stimulator by B chronic lymphocytic leukemia cells: a mechanism for survival. Blood 100(8):2973–2979. doi:10.1182/blood-2002-02-0558

    CAS  PubMed  Google Scholar 

  • O’Brien SM, Claxton DF, Crump M, Faderl S, Kipps T, Keating MJ, Viallet J, Cheson BD (2009) Phase I study of obatoclax mesylate (GX15-070), a small molecule pan-Bcl-2 family antagonist, in patients with advanced chronic lymphocytic leukemia. Blood 113(2):299–305. doi:10.1182/blood-2008-02-137943

    PubMed  Google Scholar 

  • O’Brien S, Furman RR, Coutre SE, Sharman JP, Burger JA, Blum KA, Grant B, Richards DA, Coleman M, Wierda WG, Jones JA, Zhao W, Heerema NA, Johnson AJ, Izumi R, Hamdy A, Chang BY, Graef T, Clow F, Buggy JJ, James DF, Byrd JC (2014) Ibrutinib as initial therapy for elderly patients with chronic lymphocytic leukaemia or small lymphocytic lymphoma: an open-label, multicentre, phase 1b/2 trial. Lancet Oncol 15(1):48–58. doi:10.1016/S1470-2045(13)70513-8

    PubMed Central  PubMed  Google Scholar 

  • Oki Y, Copeland A, Hagemeister F, Fayad LE, Fanale M, Romaguera J, Younes A (2012) Experience with obatoclax mesylate (GX15-070), a small molecule pan-Bcl-2 family antagonist in patients with relapsed or refractory classical Hodgkin lymphoma. Blood 119(9):2171–2172. doi:10.1182/blood-2011-11-391037

    CAS  PubMed  Google Scholar 

  • Olsson A, Norberg M, Okvist A, Derkow K, Choudhury A, Tobin G, Celsing F, Osterborg A, Rosenquist R, Jondal M, Osorio LM (2007) Upregulation of bfl-1 is a potential mechanism of chemoresistance in B-cell chronic lymphocytic leukaemia. Br J Cancer 97(6):769–777. doi:10.1038/sj.bjc.6603951, 6603951 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Opferman JT, Letai A, Beard C, Sorcinelli MD, Ong CC, Korsmeyer SJ (2003) Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature 426(6967):671–676

    CAS  PubMed  Google Scholar 

  • Opferman JT, Iwasaki H, Ong CC, Suh H, Mizuno S, Akashi K, Korsmeyer SJ (2005) Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Science 307(5712):1101–1104

    CAS  PubMed  Google Scholar 

  • Os A, Burgler S, Ribes AP, Funderud A, Wang D, Thompson KM, Tjonnfjord GE, Bogen B, Munthe LA (2013) Chronic lymphocytic leukemia cells are activated and proliferate in response to specific T helper cells. Cell Rep 4(3):566–577. doi:10.1016/j.celrep.2013.07.011

    CAS  PubMed  Google Scholar 

  • Panayiotidis P, Ganeshaguru K, Jabbar SA, Hoffbrand AV (1994) Alpha-interferon (alpha-IFN) protects B-chronic lymphocytic leukaemia cells from apoptotic cell death in vitro. Br J Haematol 86(1):169–173

    CAS  PubMed  Google Scholar 

  • Panayiotidis P, Jones D, Ganeshaguru K, Foroni L, Hoffbrand AV (1996) Human bone marrow stromal cells prevent apoptosis and support the survival of chronic lymphocytic leukaemia cells in vitro. Br J Haematol 92(1):97–103

    CAS  PubMed  Google Scholar 

  • Park CS, Choi YS (2005) How do follicular dendritic cells interact intimately with B cells in the germinal centre? Immunology 114(1):2–10. doi:10.1111/j.1365-2567.2004.02075.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pascutti MF, Jak M, Tromp JM, Derks IA, Remmerswaal EB, Thijssen R, van Attekum MH, van Bochove GG, Luijks DM, Pals ST, van Lier RA, Kater AP, van Oers MH, Eldering E (2013) IL-21 and CD40L signals from autologous T cells can induce antigen-independent proliferation of CLL cells. Blood 122(17):3010–3019. doi:10.1182/blood-2012-11-467670

    CAS  PubMed  Google Scholar 

  • Patel VM (2013) Investigating apoptosis pathway in chronic lymphocytic leukemia: stromal influence and therapeutic activation. Dissertations and theses (open access), UT GSBS, Houston. Paper 411

    Google Scholar 

  • Patel V, Balakrishnan K, Wierda WG, Gandhi V (2013) Impact of bone marrow stromal cells on Bcl-2 family members in chronic lymphocytic leukemia. Leuk Lymphoma. doi:10.3109/10428194.2013.819573

    PubMed Central  Google Scholar 

  • Pedersen IM, Kitada S, Leoni LM, Zapata JM, Karras JG, Tsukada N, Kipps TJ, Choi YS, Bennett F, Reed JC (2002) Protection of CLL B cells by a follicular dendritic cell line is dependent on induction of Mcl-1. Blood 100(5):1795–1801

    CAS  PubMed  Google Scholar 

  • Pepper C, Lin TT, Pratt G, Hewamana S, Brennan P, Hiller L, Hills R, Ward R, Starczynski J, Austen B, Hooper L, Stankovic T, Fegan C (2008) Mcl-1 expression has in vitro and in vivo significance in chronic lymphocytic leukemia and is associated with other poor prognostic markers. Blood 112(9):3807–3817. doi:10.1182/blood-2008-05-157131, blood-2008-05-157131 [pii]

    CAS  PubMed  Google Scholar 

  • Petlickovski A, Laurenti L, Li X, Marietti S, Chiusolo P, Sica S, Leone G, Efremov DG (2005) Sustained signaling through the B-cell receptor induces Mcl-1 and promotes survival of chronic lymphocytic leukemia B cells. Blood 105(12):4820–4827. doi:10.1182/blood-2004-07-2669

    CAS  PubMed  Google Scholar 

  • Plate JM, Long BW, Kelkar SB (2000) Role of beta2 integrins in the prevention of apoptosis induction in chronic lymphocytic leukemia B cells. Leukemia 14(1):34–39

    CAS  PubMed  Google Scholar 

  • Print CG, Loveland KL, Gibson L, Meehan T, Stylianou A, Wreford N, de Kretser D, Metcalf D, Kontgen F, Adams JM, Cory S (1998) Apoptosis regulator bcl-w is essential for spermatogenesis but appears otherwise redundant. Proc Natl Acad Sci U S A 95(21):12424–12431

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quiroga MP, Balakrishnan K, Kurtova AV, Sivina M, Keating MJ, Wierda WG, Gandhi V, Burger JA (2009) B-cell antigen receptor signaling enhances chronic lymphocytic leukemia cell migration and survival: specific targeting with a novel spleen tyrosine kinase inhibitor, R406. Blood 114(5):1029–1037. doi:10.1182/blood-2009-03-212837

    CAS  PubMed  Google Scholar 

  • Ranger AM, Zha J, Harada H, Datta SR, Danial NN, Gilmore AP, Kutok JL, Le Beau MM, Greenberg ME, Korsmeyer SJ (2003) Bad-deficient mice develop diffuse large B cell lymphoma. Proc Natl Acad Sci U S A 100(16):9324–9329

    PubMed Central  PubMed  Google Scholar 

  • Redaelli A, Laskin BL, Stephens JM, Botteman MF, Pashos CL (2004) The clinical and epidemiological burden of chronic lymphocytic leukaemia. Eur J Cancer Care 13(3):279–287. doi:10.1111/j.1365-2354.2004.00489.x

    CAS  Google Scholar 

  • Robert KH, Gahrton G, Friberg K, Zech L, Nilsson B (1982) Extra chromosome 12 and prognosis in chronic lymphocytic leukaemia. Scand J Haematol 28(2):163–168

    CAS  PubMed  Google Scholar 

  • Roberts AW, Seymour JF, Brown JR, Wierda WG, Kipps TJ, Khaw SL, Carney DA, He SZ, Huang DC, Xiong H, Cui Y, Busman TA, McKeegan EM, Krivoshik AP, Enschede SH, Humerickhouse R (2012) Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. J Clin Oncol 30(5):488–496. doi:10.1200/JCO.2011.34.7898

    CAS  PubMed  Google Scholar 

  • Romano MF, Lamberti A, Tassone P, Alfinito F, Costantini S, Chiurazzi F, Defrance T, Bonelli P, Tuccillo F, Turco MC, Venuta S (1998) Triggering of CD40 antigen inhibits fludarabine-induced apoptosis in B chronic lymphocytic leukemia cells. Blood 92(3):990–995

    CAS  PubMed  Google Scholar 

  • Rundles RW, Moore JO (1978) Chronic lymphocytic leukemia. Cancer 42(2 Suppl):941–945

    CAS  PubMed  Google Scholar 

  • Salvesen GS, Ashkenazi A (2011) Snapshot: caspases. Cell 147(2):476–476 e471. doi:10.1016/j.cell.2011.09.030

    CAS  PubMed  Google Scholar 

  • Sanz L, Garcia-Marco JA, Casanova B, de La Fuente MT, Garcia-Gila M, Garcia-Pardo A, Silva A (2004) Bcl-2 family gene modulation during spontaneous apoptosis of B-chronic lymphocytic leukemia cells. Biochem Biophys Res Commun 315(3):562–567. doi:10.1016/j.bbrc.2004.01.095 S0006291X04001469 [pii]

    CAS  PubMed  Google Scholar 

  • Schliep S, Decker T, Schneller F, Wagner H, Hacker G (2004) Functional evaluation of the role of inhibitor of apoptosis proteins in chronic lymphocytic leukemia. Exp Hematol 32(6):556–562. doi:10.1016/j.exphem.2004.03.006

    CAS  PubMed  Google Scholar 

  • Seke Etet PF, Vecchio L, Nwabo Kamdje AH (2012) Interactions between bone marrow stromal microenvironment and B-chronic lymphocytic leukemia cells: any role for Notch, Wnt and Hh signaling pathways? Cell Signal 24(7):1433–1443. doi:10.1016/j.cellsig.2012.03.008

    CAS  PubMed  Google Scholar 

  • Shanafelt TD, Geyer SM, Bone ND, Tschumper RC, Witzig TE, Nowakowski GS, Zent CS, Call TG, Laplant B, Dewald GW, Jelinek DF, Kay NE (2008) CD49d expression is an independent predictor of overall survival in patients with chronic lymphocytic leukaemia: a prognostic parameter with therapeutic potential. Br J Haematol 140(5):537–546. doi:10.1111/j.1365-2141.2007.06965.x

    CAS  PubMed  Google Scholar 

  • Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, Dayton BD, Ding H, Enschede SH, Fairbrother WJ, Huang DC, Hymowitz SG, Jin S, Khaw SL, Kovar PJ, Lam LT, Lee J, Maecker HL, Marsh KC, Mason KD, Mitten MJ, Nimmer PM, Oleksijew A, Park CH, Park CM, Phillips DC, Roberts AW, Sampath D, Seymour JF, Smith ML, Sullivan GM, Tahir SK, Tse C, Wendt MD, Xiao Y, Xue JC, Zhang H, Humerickhouse RA, Rosenberg SH, Elmore SW (2013) ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med 19(2):202–208. doi:10.1038/nm.3048

    CAS  PubMed  Google Scholar 

  • Starczynski J, Pepper C, Pratt G, Hooper L, Thomas A, Milligan D, Bentley P, Fegan C (2005) Common polymorphism G(−248)A in the promoter region of the bax gene results in significantly shorter survival in patients with chronic lymphocytic Leukemia once treatment is initiated. J Clin Oncol 23(7):1514–1521. doi:10.1200/JCO.2005.02.192

    CAS  PubMed  Google Scholar 

  • Steurer M, Pall G, Richards S, Schwarzer G, Bohlius J, Greil R (2006) Single-agent purine analogues for the treatment of chronic lymphocytic leukaemia: a systematic review and meta-analysis. Cancer Treat Rev 32(5):377–389. doi:10.1016/j.ctrv.2006.05.002

    CAS  PubMed  Google Scholar 

  • Stevenson FK, Caligaris-Cappio F (2004) Chronic lymphocytic leukemia: revelations from the B-cell receptor. Blood 103(12):4389–4395. doi:10.1182/blood-2003-12-4312

    CAS  PubMed  Google Scholar 

  • Takeuchi H, Katayama I (1993) Surface phenotype and adhesion activity of B-cell chronic lymphoid leukemias. Leuk Lymphoma 10(3):209–216. doi:10.3109/10428199309145885

    CAS  PubMed  Google Scholar 

  • Takeuchi O, Fisher J, Suh H, Harada H, Malynn BA, Korsmeyer SJ (2005) Essential role of BAX, BAK in B cell homeostasis and prevention of autoimmune disease. Proc Natl Acad Sci U S A 102(32):11272–11277

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas S, Quinn BA, Das SK, Dash R, Emdad L, Dasgupta S, Wang XY, Dent P, Reed JC, Pellecchia M, Sarkar D, Fisher PB (2013) Targeting the Bcl-2 family for cancer therapy. Expert Opin Ther Targets 17(1):61–75. doi:10.1517/14728222.2013.733001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S, Johnson EF, Marsh KC, Mitten MJ, Nimmer P, Roberts L, Tahir SK, Xiao Y, Yang X, Zhang H, Fesik S, Rosenberg SH, Elmore SW (2008) ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 68(9):3421–3428. doi:10.1158/0008-5472.CAN-07-5836, 68/9/3421 [pii]

    CAS  PubMed  Google Scholar 

  • Ueshima Y, Bird ML, Vardiman JW, Rowley JD (1985) A 14;19 translocation in B-cell chronic lymphocytic leukemia: a new recurring chromosome aberration. Intl J Cancer 36(3):287–290

    CAS  Google Scholar 

  • Vallabhapurapu S, Karin M (2009) Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 27:693–733. doi:10.1146/annurev.immunol.021908.132641

    CAS  PubMed  Google Scholar 

  • Veis DJ, Sorenson CM, Shutter JR, Korsmeyer SJ (1993) Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75(2):229–240

    CAS  PubMed  Google Scholar 

  • Villunger A, Scott C, Bouillet P, Strasser A (2003) Essential role for the BH3-only protein Bim but redundant roles for Bax, Bcl-2, and Bcl-w in the control of granulocyte survival. Blood 101(6):2393–2400

    CAS  PubMed  Google Scholar 

  • von Bergwelt-Baildon M, Maecker B, Schultze J, Gribben JG (2004) CD40 activation: potential for specific immunotherapy in B-CLL. Ann Oncol 15(6):853–857

    Google Scholar 

  • Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292(5517):727–730

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wickremasinghe RG, Hoffbrand AV (1999) Biochemical and genetic control of apoptosis: relevance to normal hematopoiesis and hematological malignancies. Blood 93(11):3587–3600

    CAS  PubMed  Google Scholar 

  • Wierda WG, Cantwell MJ, Woods SJ, Rassenti LZ, Prussak CE, Kipps TJ (2000) CD40-ligand (CD154) gene therapy for chronic lymphocytic leukemia. Blood 96(9):2917–2924

    CAS  PubMed  Google Scholar 

  • Wiestner A, Rosenwald A, Barry TS, Wright G, Davis RE, Henrickson SE, Zhao H, Ibbotson RE, Orchard JA, Davis Z, Stetler-Stevenson M, Raffeld M, Arthur DC, Marti GE, Wilson WH, Hamblin TJ, Oscier DG, Staudt LM (2003) ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 101(12):4944–4951. doi:10.1182/blood-2002-10-3306

    CAS  PubMed  Google Scholar 

  • Xie P, Kraus ZJ, Stunz LL, Bishop GA (2008) Roles of TRAF molecules in B lymphocyte function. Cytokine Growth Factor Rev 19(3–4):199–207. doi:10.1016/j.cytogfr.2008.04.002

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang W, Trachootham D, Liu J, Chen G, Pelicano H, Garcia-Prieto C, Lu W, Burger JA, Croce CM, Plunkett W, Keating MJ, Huang P (2012) Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nat Cell Biol 14(3):276–286. doi:10.1038/ncb2432

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng C, Yin Q, Wu H (2011) Structural studies of NF-kappaB signaling. Cell Res 21(1):183–195. doi:10.1038/cr.2010.171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou P, Levy NB, Xie H, Qian L, Lee CY, Gascoyne RD, Craig RW (2001) MCL1 transgenic mice exhibit a high incidence of B-cell lymphoma manifested as a spectrum of histologic subtypes. Blood 97(12):3902–3909

    CAS  PubMed  Google Scholar 

  • Zinkel SS, Ong CC, Ferguson DO, Iwasaki H, Akashi K, Bronson RT, Kutok JL, Alt FW, Korsmeyer SJ (2003) Proapoptotic BID is required for myeloid homeostasis and tumor suppression. Genes Dev 17(2):229–239

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Markeda Wade from Scientific Publication for critically reviewing and editing the manuscript. This work was supported in part by grant P01 CA81534 from the National Cancer Institute, a CLL Global Research Foundation Alliance grant award, and generous philanthropic contributions to The University of Texas MD Anderson Cancer Center Moon Shot Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varsha Gandhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Patel, V., Balakrishnan, K., Gandhi, V. (2015). Apoptosis Pathways in Chronic Lymphocytic Leukemia: Role of the Microenvironment and Therapeutic Strategies. In: Gandhi, V., Mehta, K., Grover, R., Pathak, S., Aggarwal, B. (eds) Multi-Targeted Approach to Treatment of Cancer. Adis, Cham. https://doi.org/10.1007/978-3-319-12253-3_4

Download citation

Publish with us

Policies and ethics