Skip to main content

Distance Measures for Prototype Based Classification

  • Conference paper
  • First Online:
Book cover Brain-Inspired Computing (BrainComp 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8603))

Included in the following conference series:

Abstract

The basic concepts of distance based classification are introduced in terms of clear-cut example systems. The classical k-Nearest-Neigbhor (kNN) classifier serves as the starting point of the discussion. Learning Vector Quantization (LVQ) is introduced, which represents the reference data by a few prototypes. This requires a data driven training process; examples of heuristic and cost function based prescriptions are presented. While the most popular measure of dissimilarity in this context is the Euclidean distance, this choice is frequently made without justification. Alternative distances can yield better performance in practical problems. Several examples are discussed, including more general Minkowski metrics and statistical divergences for the comparison of, e.g., histogram data. Furthermore, the framework of relevance learning in LVQ is presented. There, parameters of adaptive distance measures are optimized in the training phase. A practical application of Matrix Relevance LVQ in the context of tumor classification illustrates the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this article, we use the term distance in its general sense, not necessarily implying symmetry or other metric properties.

References

  1. Bishop, C.: Pattern Recognition and Machine Learning. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  2. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer, New York (2009)

    Book  Google Scholar 

  3. Duda, R., Hart, P., Storck, D.: Pattern Classification, 2nd edn. Wiley, New York (2001)

    MATH  Google Scholar 

  4. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  5. Biehl, M., Hammer, B., Verleysen, M., Villmann, T. (eds.): Similarity-Based Clustering. LNCS, vol. 5400. Springer, Heidelberg (2009)

    Google Scholar 

  6. Hammer, B., Schleif, F.-M., Zhu, X.: Relational extensions of learning vector quantization. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011, Part II. LNCS, vol. 7063, pp. 481–489. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theor. 13, 21–27 (1967)

    Article  MATH  Google Scholar 

  8. Kohonen, T.: Self-Organizing Maps, 2nd edn. Springer, Heidelberg (1997)

    Book  MATH  Google Scholar 

  9. Kohonen, T.: Improved versions of learning vector quantization. In: International Joint Conference on Neural Networks, vol. 1, pp. 545–550 (1990)

    Google Scholar 

  10. Hart, P.: The condensed nearest neighbor rule. IEEE Trans. Inf. Theor. 14, 515–516 (1968)

    Article  Google Scholar 

  11. Wu, Y., Ianakiev, K., Govindaraju, V.: Improved k-nearest neighbor classification. Pattern Recogn. 35, 2311–2318 (2002)

    Article  MATH  Google Scholar 

  12. Strickert, M., Hammer, B., Villmann, T., Biehl, M.: Regularization and improved interpretation of linear data mappings and adaptive distance measures. In: Proceedings of the IEEE Symposium on Computational Intelligence (IEEE SSCI), IEEE, vol. 2013, p. 8 (2013)

    Google Scholar 

  13. Helsinki University of Technology: Bibliography on the Self-Organizing Map (SOM) and Learning Vector Quantization (LVQ). Neural Networks Research Centre, HUT (2002)

    Google Scholar 

  14. Sato, A., Yamada, K.: Generalized Learning vector quantization. In: Touretzky, D.S., Hasselmo, M.E. (eds.) Proceedings of the 1995 Conference, Cambridge, MA, USA, MIT Press. vol. 8, Advances in Neural Information Processing Systems, pp. 423–429 (1996)

    Google Scholar 

  15. Sato, A., Yamada, K.: An analysis of convergence in generalized LVQ. In: Niklasson, L., Bodn, M., Ziemke, T. (eds.) Proceedings of the International Conference on Artificial Neural Networks, Springer, pp. 170–176 (1998)

    Google Scholar 

  16. Seo, S., Obermayer, K.: Soft learning vector quantization. Neural Comput. 15(7), 1589–1604 (2003)

    Article  MATH  Google Scholar 

  17. Seo, S., Bode, M., Obermayer, K.: Soft nearest prototype classification. Trans. Neural Netw. 14, 390–398 (2003)

    Article  Google Scholar 

  18. Seo, S., Obermayer, K.: Dynamic hyperparameter scaling method for LVQ algorithms. In: IJCNN’06, International Joint Conference on Neural Networks, IEEE, pp. 3196–3203 (2006)

    Google Scholar 

  19. Schneider, P., Biehl, M., Hammer, B.: Hyperparameter learning in probabilistic prototype-based models. Neurocomputing 73(7–9), 1117–1124 (2010)

    Article  Google Scholar 

  20. Schneider, P., Biehl, M., Hammer, B.: Adaptive relevance matrices in learning vector quantization. Neural Comput. 21(12), 3532–3561 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 405 (1951)

    Article  MathSciNet  Google Scholar 

  22. Bottou, L.: Online algorithms and stochastic approximations. In: Saad, D. (ed.) Online Learning and Neural Networks. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  23. Lee, J., Verleysen, M.: Nonlinear Dimension Reduction. Springer, New York (2007)

    Book  Google Scholar 

  24. Hammer, B., Villmann, T.: Classification using non-standard metrics. In: Verleysen, M. (ed.) European Symposium on Artificial Neural Networks, ESANN 2005, pp. 303–316. d-side publishing (2005)

    Google Scholar 

  25. Lee, J., Verleysen, M.: Generalization of the Lp-norm for time series and its application to self-organizing maps. In: Cottrell, M. (ed.) Proceedings of the Workshop on Self-Organizing Maps (WSOM), Paris, Sorbonne, pp. 733–740 (2005)

    Google Scholar 

  26. Villmann, T., Hammer, B.: Functional principal component learning using Oja’s method and Sobolev norms. In: Príncipe, J.C., Miikkulainen, R. (eds.) WSOM 2009. LNCS, vol. 5629, pp. 325–333. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  27. Lange, M., Villmann, T.: Derivatives of Lp-norms and their approximations. Machine Learning Reports MLR-04-2013, pp. 43–59 (2013)

    Google Scholar 

  28. Giles, J.: Classes of semi-inner-product spaces. Trans. Am. Math. Soc. 129, 436–446 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lumer, G.: Semi-inner-product spaces. Trans. Am. Math. Soc. 100, 29–43 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  30. Golubitsky, O., Watt, S.: Distance-based classification of handwritten symbols. Int. J. Doc. Anal. Recogn. (IJDAR) 13(2), 133–146 (2010)

    Article  Google Scholar 

  31. Biehl, M., Breitling, R., Li, Y.: Analysis of tiling microarray data by learning vector quantization and relevance learning. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 880–889. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  32. Joliffe, I.: Principal Component Analysis. Springer, New York (2002)

    Google Scholar 

  33. Biehl, M., Kästner, M., Lange, M., Villmann, T.: Non-euclidean principal component analysis and Oja’s learning rule – theoretical aspects. In: Estevez, P.A., Principe, J.C., Zegers, P. (eds.) Advances in Self-Organizing Maps. AISC, vol. 198, pp. 23–34. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  34. Villmann, T., Kästner, M., Backhaus, A., Seiffert, U.: Processing hyperspectral data in machine learning. In: Verleysen, M. (ed.) European Symposium on Artificial Neural Networks, ESANN 2013, p. 6. d-side publishing (2013)

    Google Scholar 

  35. Kullback, S., Leibler, R.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  36. Villmann, T., Haase, S.: Divergence based vector quantization. Neural Comput. 23(5), 1343–1392 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mwebaze, E., Schneider, P., Schleif, F.M., Aduwo, J., Quinn, J., Haase, S., Villmann, T., Biehl, M.: Divergence based classification and learning vector quantization. Neurocomputing 74, 1429–1435 (2011)

    Article  Google Scholar 

  38. Schölkopf, B.: The kernel trick for distances. In: Tresp, V. (ed.) Advances in Neural Information Processing Systems, pp. 301–307. MIT Press, Cambridg (2001)

    Google Scholar 

  39. Inokuchi, R., Miyamoto, S.: LVQ clustering and SOM using a kernel function. In: Proceedings of the 2004 IEEE International Conference on Fuzzy Systems, vol. 3, pp. 1497–1500 (2004)

    Google Scholar 

  40. Schleif, F.-M., Villmann, T., Hammer, B., Schneider, P., Biehl, M.: Generalized derivative based kernelized learning vector quantization. In: Fyfe, C., Tino, P., Charles, D., Garcia-Osorio, C., Yin, H. (eds.) IDEAL 2010. LNCS, vol. 6283, pp. 21–28. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  41. Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  42. Steinwart, I.: On the influence of the kernel on the consistency of support vector machines. J. Mach. Learn. Res. 2, 67–93 (2001)

    MathSciNet  Google Scholar 

  43. Villmann, T., Kästner, M., Nebel, D., Riedel, M.: ICMLA face recognition challenge - results of the team ‘Computational Intelligence Mittweida’. In: Proceedings of the International Conference on Machine Learning Applications (ICMLA’12), pp. 7–10. IEEE Computer Society Press (2012)

    Google Scholar 

  44. Villmann, T., Haase, S., Kästner, M.: Gradient based learning in vector quantization using differentiable kernels. In: Estevez, P.A., Principe, J.C., Zegers, P. (eds.) Advances in Self-Organizing Maps. AISC, vol. 198, pp. 193–204. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  45. Bunte, K., Schneider, P., Hammer, B., Schleif, F.M., Villmann, T., Biehl, M.: Limited rank matrix learning, discriminative dimension reduction, and visualization. Neural Netw. 26, 159–173 (2012)

    Article  Google Scholar 

  46. Biehl, M., Bunte, K., Schleif, F.M., Schneider, P., Villmann, T.: Large margin linear discriminative visualization by matrix relevance learning. In: Proceedings of the WCCI 2012 - IEEE World Congress on Computational Intelligence, IEEE Press (2012)

    Google Scholar 

  47. Bojer, T., Hammer, B., Schunk, D., von Toschanowitz, K.T.: Relevance determination in learning vector quantization. In: Verleysen, M. (ed.) European Symposium on Artificial Neural Networks, pp. 271–276 (2001)

    Google Scholar 

  48. Hammer, B., Villmann, T.: Generalized relevance learning vector quantization. Neural Netw. 15(8–9), 1059–1068 (2002)

    Article  Google Scholar 

  49. Weinberger, K., Blitzer, J., Saul, L.: Distance metric learning for large margin nearest neighbor classification. In: Weiss, Y., Schölkopf, B., Platt, J. (eds.) Advances in Neural Information Processing Systems, vol. 18, pp. 1473–1480. MIT Press, Cambridge (2006)

    Google Scholar 

  50. Backhaus, A., Ashok, P., Praveen, B., Dholakia, K., Seiffert, U.: Classifying Scotch Whisky from near-infrared Raman spectra with a radial basis function network with relevance learning. In: Verleysen, M. (ed.) European symposium on Artificial Neural Networks, vol. 2012, pp. 411–416 (2012)

    Google Scholar 

  51. Biehl, M., Bunte, K., Schneider, P.: Relevance and matrix adaptation in learning vector quantization (2013). http://matlabserver.cs.rug.nl/gmlvqweb/web

  52. Arlt, W., Biehl, M., Taylor, A., Hahner, S., Libe, R., Hughes, B., Schneider, P., Smith, D., Stiekema, H., Krone, N., Porfiri, E., Opocher, G., Bertherat, J., Mantero, F., Allolio, B., Terzolo, M., Nightingale, P., Shackleton, C., Bertagna, X., Fassnacht, M., Stewart, P.: Urine steroid metabolomics as a biomarker tool for detecting malignancy in adrenal tumors. J. Clin. Endocrinol. Metab. 96, 3775–3784 (2011)

    Article  Google Scholar 

  53. Biehl, M., Schneider, P., Smith, D., Stiekema, H., Taylor, A., Hughes, B., Shackleton, C., Stewart, P., Arlt, W.: Matrix relevance LVQ in steroid metabolomics based classification of adrenal tumors. In: Verleysen, M. (ed.) 20th European Symposium on Artificial Neural Networks (ESANN 2012), pp. 423–428, d-side publishing (2012)

    Google Scholar 

  54. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874 (2006)

    Article  Google Scholar 

  55. Biehl, M., Hammer, B., Schleif, F.M., Schneider, P., Villmann, T.: Stationarity of matrix relevance learning vector quantization. Technical report MLR-01-2009, Machine Learning Reports, University of Leipzig (2009)

    Google Scholar 

  56. Biehl, M., Bunte, K., Schneider, P.: Analysis of flow cytometry data by matrix relevance learning vector quantization. PLoS ONE 8(3), e59401 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Biehl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Biehl, M., Hammer, B., Villmann, T. (2014). Distance Measures for Prototype Based Classification. In: Grandinetti, L., Lippert, T., Petkov, N. (eds) Brain-Inspired Computing. BrainComp 2013. Lecture Notes in Computer Science(), vol 8603. Springer, Cham. https://doi.org/10.1007/978-3-319-12084-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12084-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12083-6

  • Online ISBN: 978-3-319-12084-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics