Skip to main content

On the Law of a Triplet Associated with the Pseudo-Brownian Bridge

  • Chapter
  • First Online:
Séminaire de Probabilités XLVI

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 2123))

Abstract

We identify the distribution of a natural triplet associated with the pseudo-Brownian bridge. In particular, for B a Brownian motion and T 1 its first hitting time of the level one, this remarkable law allows us to understand some properties of the process \((B_{\mathit{uT}_{1}}/\sqrt{T_{1}},\ u \leq 1)\) under uniform random sampling, a study started in (Elie, Rosenbaum, and Yor, On the expectation of normalized Brownian functionals up to first hitting times, Preprint, arXiv:1310.1181, 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Biane, J.-F. Le Gall, M. Yor, Un processus qui ressemble au pont brownien. In: Séminaire de Probabilités XXI (Springer, New York, 1987), pp. 270–275

    Google Scholar 

  2. R. Elie, M. Rosenbaum, M. Yor, On the expectation of normalized brownian functionals up to first hitting times. arXiv preprint arXiv:1310.1181 (2013)

    Google Scholar 

  3. J.W. Pitman, One-dimensional brownian motion and the three-dimensional bessel process. Adv. Appl. Probab. 7, 511–526 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. J.W. Pitman, Brownian motion, bridge, excursion, and meander characterized by sampling at independent uniform times. Electron. J. Probab. 4(11), 1–33 (1999)

    MathSciNet  Google Scholar 

  5. D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, vol. 293 (Springer, New York, 1999)

    Google Scholar 

Download references

Acknowledgements

We thank the referee for a thorough reading of our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Rosenbaum .

Editor information

Editors and Affiliations

A Appendix

A Appendix

1.1 A.1 A Simple Proof for the Joint Law of \((1/\sqrt{\tau _{1}},L_{U\tau _{1}})\)

The fact that

$$\displaystyle{( \frac{1} {\sqrt{\tau _{1}}},L_{U\tau _{1}})\mathop{ =}\limits_{ \mathcal{L}}(L_{1},\varLambda )}$$

can obviously be deduced from Theorem 1. However, interestingly, we can give a simple proof for this equality in law. Indeed, for λ ≥ 0 and l < 1, we have

$$\displaystyle\begin{array}{rcl} \mathbb{E}[\text{e}^{-\lambda \tau _{1} }\mathrm{1}_{\{L_{U\tau _{ 1}}\leq l\}}]& =& \mathbb{E}[\frac{1} {\tau _{1}} \int _{0}^{\tau _{1} }\mathit{ds}\mathrm{1}_{\{L_{s}\leq l\}}\text{e}^{-\lambda \tau _{1} }] {}\\ & =& \mathbb{E}[ \frac{\tau _{l}} {\tau _{1}}\text{e}^{-\lambda \tau _{1} }]. {}\\ \end{array}$$

Now, consider in general (τ l ) a subordinator and denote by ψ its Laplace exponent. Thus, we have

$$\displaystyle\begin{array}{rcl} \mathbb{E}[ \frac{\tau _{l}} {\tau _{1}}\text{e}^{-\lambda \tau _{1} }]& =& \mathbb{E}[\tau _{l}\int _{0}^{+\infty }\mathit{dt}\text{e}^{-(t+\lambda )\tau _{1} }] {}\\ & =& \int _{0}^{+\infty }\mathit{dt}\mathbb{E}[\tau _{ l}\text{e}^{-(t+\lambda )\tau _{l} }]\text{e}^{-(1-l)\psi (t+\lambda )}. {}\\ \end{array}$$

Using the fact that the Laplace exponent is differentiable on \(\mathbb{R}^{+{\ast}}\), we get

$$\displaystyle\begin{array}{rcl} \mathbb{E}[ \frac{\tau _{l}} {\tau _{1}}\text{e}^{-\lambda \tau _{1} }]& =& \int _{0}^{+\infty }\mathit{dt}l\psi ^{{\prime}}(t+\lambda )\text{e}^{-l\psi (t+\lambda )}\text{e}^{-(1-l)\psi (t+\lambda )} {}\\ & =& l\text{e}^{-\psi (\lambda )}. {}\\ \end{array}$$

This proves the independence of \(1/\sqrt{\tau _{1}}\) and \(L_{U\tau _{1}}\) and the fact that \(L_{U\tau _{1}}\) is uniformly distributed. The equality in law

$$\displaystyle{ \frac{1} {\sqrt{\tau _{1}}}\mathop{ =}\limits_{ \mathcal{L}}L_{1}}$$

is easily obtained by scaling.

1.2 A.2 On a One Parameter Family of Random Variables Including α

In this section of the appendix, we consider the family of variables defined for 0 < c ≤ 1 by

$$\displaystyle{\alpha _{c} =\varLambda L_{1} - c\vert B_{1}\vert,}$$

as an extension of our study of

$$\displaystyle{\alpha \mathop{=}\limits_{ \mathcal{L}}\alpha _{1/2}\mathop{ =}\limits_{ \mathcal{L}}B_{\mathit{UT}_{1}}/\sqrt{T_{1}}.}$$

The variables α c , although less natural than α 1∕2, enjoy some similar remarkable properties. Indeed, Propositions 3 and 2 admit the following extensions.

Proposition 5

Let 0 < c ≤ 1 and \(C = 1/c\) . Let Λ and U be two independent uniform variables on [0,1] and

$$\displaystyle{A_{c} =\varLambda U - c(1 - U).}$$

We have

$$\displaystyle\begin{array}{rcl} & & (A_{c}\vert A_{c} > 0)\mathop{ =}\limits_{ \mathcal{L}}\mathit{VZ}_{C} {}\\ & & (-A_{c}\vert A_{c} < 0)\mathop{ =}\limits_{ \mathcal{L}}\mathit{cV } {}\\ & & \mathbb{P}[A_{c} > 0] = 1 - c log (1 + C), {}\\ \end{array}$$

where V and Z C are independent, with V uniform on [0,1] and Z C a random variable with density given by

$$\displaystyle{ \frac{C} {1 - c log (1 + C)} \frac{\mathit{d\,zz}} {(1 + \mathit{C\,z})}\mathrm{1}_{\{0<z<1\}}.}$$

Proposition 6

Let 0 < c ≤ 1. The following equalities in law hold.

$$\displaystyle\begin{array}{rcl} & & (\alpha _{c}\vert \alpha _{c} > 0)\mathop{ =}\limits_{ \mathcal{L}}\vert N\vert Z_{C} {}\\ & & (-\alpha _{c}\vert \alpha _{c} < 0)\mathop{ =}\limits_{ \mathcal{L}}c\vert N\vert {}\\ & & \mathbb{P}[\alpha _{c} > 0] = 1 - c log (1 + C). {}\\ \end{array}$$

Proof

To establish Proposition 5, we simply compute the density of A c . Proposition 6 ensues since

$$\displaystyle{\alpha _{c}\mathop{ =}\limits_{ \mathcal{L}}R_{1}A_{c}}$$

and

$$\displaystyle{R_{1}V \mathop{ =}\limits_{ \mathcal{L}}\vert N\vert,}$$

with the same notation as previously. □ 

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rosenbaum, M., Yor, M. (2014). On the Law of a Triplet Associated with the Pseudo-Brownian Bridge. In: Donati-Martin, C., Lejay, A., Rouault, A. (eds) Séminaire de Probabilités XLVI. Lecture Notes in Mathematics(), vol 2123. Springer, Cham. https://doi.org/10.1007/978-3-319-11970-0_14

Download citation

Publish with us

Policies and ethics