Skip to main content

Dominant Motion Analysis in Regular and Irregular Crowd Scenes

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8749))

Abstract

In this paper we present a novel method for dominant motion analysis in crowded scenes, based on corner features. In our method, we initialize corner features on the scene, and advect them through optical flow. Approximating the moving corner features to individuals, their interaction forces, represented as endothermic reactions in a thermodynamic system, are computed using the enthalpy measure, thus obtaining the potential corner features of interest. These features are exploited to extract the orientation patterns, used as input priors for training a random forest. The experimental evaluation is conducted on a set of benchmark video sequences, commonly used for crowd motion analysis, and the obtained results are compared against other state of the art techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Montgomery, M.: The urban transformation of the developing world. Science 319(5864), 761–764 (2008)

    Article  Google Scholar 

  2. Basharat, A., Gritai, A., Shah, M.: Learning object motion patterns for anomaly detection and improved object detection. In: International Conference on Computer Vision and Pattern Recognition. IEEE CVPR, pp. 1–8 (2008)

    Google Scholar 

  3. Ullah, H., Tenuti, L., Conci, N.: Gaussian mixtures for anomaly detection in crowded scenes. In: IS&T/SPIE Electronic Imaging, pp. 866303. International Society for Optics and Photonics (2013)

    Google Scholar 

  4. Zhang, T., Lu, H., Li, S.: Learning semantic scene models by object classification and trajectory clustering. In: International Conference on Computer Vision and Pattern Recognition. IEEE CVPR, pp. 1940–1947 (2009)

    Google Scholar 

  5. Ullah, H., Ullah, M., Conci, N.: Real-time anomaly detection in dense crowded scenes. In: IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics (2014)

    Google Scholar 

  6. Zhong, H., Shi, J., Visontai, M.: Detecting unusual activity in video. In: International Conference on Computer Vision and Pattern Recognition, IEEE CVPR, p. II–819 (2004)

    Google Scholar 

  7. Kratz, L., Nishino, K.: Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models. In: International Conference on Computer Vision and Pattern Recognition, IEEE CVPR, pp. 1446–1453 (2009)

    Google Scholar 

  8. Laptev, I.: On space-time interest points. International Journal of Computer Vision, IJCV 64(2-3), 107–123 (2005)

    Article  Google Scholar 

  9. Arslan, B., Zai, Y., Shah, M.: Content based video matching using spatiotemporal volumes. Internation Journal of Computer Vision and Image Understanding, CVIU 110(3), 360–377 (2008)

    Article  Google Scholar 

  10. Andrade, E., Blunsden, S., Fisher, R.: Modelling crowd scenes for event detection. In: International Conference on Pattern Recognition, IEEE ICPR, pp. 175–178 (2006)

    Google Scholar 

  11. Jacques, J., Musse, S., Jung, C.: Crowd analysis using computer vision techniques. IEEE Signal Processing Magazine 27(5), 66–77 (2010)

    Google Scholar 

  12. Zhan, B., Monekosso, D., Remagnino, P., Velastin, S., Xu, L.: Crowd analysis: a survey. Machine Vision and Applications 19(5), 345–357 (2008)

    Article  MATH  Google Scholar 

  13. Qiu, F., Hu, X.: Modeling group structures in pedestrian crowd simulation. Simulation Modelling Practice and Theory 18(2), 190–205 (2010)

    Article  Google Scholar 

  14. Rota, P., Ullah, H., Conci, N., Sebe, N.: Particles cross-influence for entity grouping. In: Proceedings of the Signal Processing Conference, IEEE EUSIPCO (2013)

    Google Scholar 

  15. Ozturk, O., Yamasaki, T., Aizawa, K.: Detecting dominant motion flows in unstructured/structured crowd scenes. In: International Conference on Pattern Recognition, IEEE ICPR, pp. 3533–3536 (2010)

    Google Scholar 

  16. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: Advances in Neural Information Processing Systems, NIPS, pp. 1601–1608 (2004)

    Google Scholar 

  17. Chen, W., Zhao, Y., Xie, W., Sang, N.: An improved sift algorithm for image feature-matching. In: International Conference on Multimedia Technology, IEEE ICMT, pp. 197–200 (2011)

    Google Scholar 

  18. Wu, J., Cui, Z., Sheng, V.S., Zhao, P., Su, D., Gong, S.: A comparative study of sift and its variants. Measurement Science Review 13(3), 122–131 (2013)

    Article  Google Scholar 

  19. Nadler, B., Galun, M.: Fundamental limitations of spectral clustering. In: Advances in Neural Information Processing Systems, pp. 1017–1024 (2006)

    Google Scholar 

  20. Ullah, H., Conci, N.: Crowd motion segmentation and anomaly detection via multi-label optimization. In: ICPR Workshop on Pattern Recognition and Crowd Analysis (2012)

    Google Scholar 

  21. Ullah, H., Conci, N.: Structured learning for crowd motion segmentation. In: International Conference on Image Processing, IEEE ICIP (2013)

    Google Scholar 

  22. Boykov, Y., Vekser, O., Zabi, R.: Fast approximate energy minimization via graph cuts. IEEE PAMI Transactions on Pattern Analysis and Machine Intelligence 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  23. Brunner, G., Chittajallu, D.R., Kurkure, U., Kakadiaris, I.A.: Patch-cuts: A graph-based image segmentation method using patch features and spatial relations. In: British Machine Vision Conference, BMVC (2010)

    Google Scholar 

  24. Yves, B.: Pyramidal implementation of the lucas-kanade feature tracker. Microsoft Res. Labs, Tech. Rep. (1999)

    Google Scholar 

  25. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  26. Ali, S., Shah, M.: A lagrangian particle dynamics approach for crowd flow segmentation and stability analysis. In: International Conference on Computer Vision and Pattern Recognition, IEEE CVPR, pp. 1–6 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ullah, H., Ullah, M., Conci, N. (2014). Dominant Motion Analysis in Regular and Irregular Crowd Scenes. In: Park, H.S., Salah, A.A., Lee, Y.J., Morency, LP., Sheikh, Y., Cucchiara, R. (eds) Human Behavior Understanding. HBU 2014. Lecture Notes in Computer Science, vol 8749. Springer, Cham. https://doi.org/10.1007/978-3-319-11839-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11839-0_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11838-3

  • Online ISBN: 978-3-319-11839-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics