Skip to main content

New Technologies for Energy Recovery from Waste

  • Chapter
  • First Online:
Management of Pulp and Paper Mill Waste
  • 1605 Accesses

Abstract

New Technologies – Pyrolysis, Direct liquefaction, Wet Air Oxidation, Super Critical Water Oxidation, Steam Reforming, Gasification (Plasma Gasification, Super Critical gasification) for energy recovery from waste are discussed. The operating conditions (temperature, pressure, atmosphere and products, etc.) vary among the methods. For example, gasification and SCWO methods utilize air or oxygen while some methods are conducted under oxygen depleted or anaerobic conditions. Pyrolysis and gasification operate at high temperatures; Pyrolysis targets a high yield of oil, and gasification favors production of gas. The greatest sludge volume reduction (over 90 %) can be achieved with the high-temperature methods which is advantageous as it effectively reduces the physical amount of sludge for disposal. The major disadvantage for these high-temperature processes is their lower net energy efficiency for the treatment of secondary sludge containing very high content of water, resulting from the need of the energy intensive operations of dewatering/thickening and complete evaporation of the water in the sludge. In contrast, the other treatment methods, i.e., direct liquefaction, SCWO operate at a relatively lower temperature and more importantly without the need of dewatering /thickening and complete evaporation of the water in the sludge. Accordingly, these methods are more promising for the treatment of secondary sludge from the standpoint of energy recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe N, Tang YQ, Iwamura M, Ohta H, Morimura S, Kida K (2011) Development of an efficient process for the treatment of residual sludge discharged from an anaerobic digester in a sewage treatment plant. Bioresour Technol 102:7641–7644

    Article  CAS  Google Scholar 

  • Abe N, Tang YQ, Iwamura M, Morimura S, Kida K (2013) Pretreatment followed by anaerobic digestion of secondary sludge for reduction of sewage sludge volume. Water Sci Technol 67:2527–2533

    Article  CAS  Google Scholar 

  • Agblevor FA, Besler S, Wiselogel AE (1995) Fast pyrolysis of stored biomass feedstocks. Energy Fuel 9:635–640

    Article  CAS  Google Scholar 

  • Aghamohammadi B, Durai-Swamy K (1995) A disposal alternative for sludge waste from recycled paper and cardboard. Environmental issues and technology in the pulp and paper industry. A TAPPI Press. Anthology of published papers, 1991–1994, Atlanta, Georgia, USA, pp 445–449

    Google Scholar 

  • Antal JM, Allen SG, Schulman D, Xu X, Divilio RJ (2000) Biomass gasification in supercritical water. Ind Eng Chem Res 39:4040–4053

    Article  CAS  Google Scholar 

  • Areeprasert C, Zhao P, Ma D, Shen Y, Yoshikawa K (2014) Alternative solid fuel production from paper sludge employing hydrothermal treatment. Energy Fuels 28(2):1198–1206. doi:10.1021/ef402371h

    Article  CAS  Google Scholar 

  • Bambang V, Jae-Duck K (2007) Supercritical water oxidation for the destruction of toxic organic wastewaters: a review. J Environ Sci 19:513–522

    Article  Google Scholar 

  • Beckman D, Elliot DC (1985) Comparisons of yields and properties of the oil products from direct thermochemical biomass liquefaction processes. Can J Chem Eng 63(2):99–104

    Article  CAS  Google Scholar 

  • Bermejo MD, Fdez-Polanco F, Cocero MJ (2006) Experimental study of the operational parameters of a transpiring wall reactor for supercritical water oxidation. J Supercrit Fluids 39:70–79

    Article  CAS  Google Scholar 

  • Biomass Technology Group (2010) Supercritical gasification, [online] Available at: http://www.btgworld.com/index.php?id=25&rid=8&r=rd. Accessed Nov 2010

  • Blaney CA, Li L, Gloyna EF, Hossain SU (1995) Supercritical water oxidation of pulp and paper mill sludge as an alternative to incineration. ACS Symp Ser 608(1995):444–455

    Article  CAS  Google Scholar 

  • Boocock DGB, Sherman KM (1985) Further aspects of powdered poplar wood liquefaction by aqueous pyrolysis. Can J Chem Eng 63(8):627–633

    Article  CAS  Google Scholar 

  • Borgatti DR, Brooks JA, Carney KB, Krupa DP, Kruzel JP (2000) High biosolids costs? Reduce volume, starve the bugs! In: Proceedings of the WEF Biosolids 2000 annual conference and exhibition, Boston

    Google Scholar 

  • Boukis N, Diem V, Dinjus E (2002) Biomass gasification in supercritical water. In: Twelfth European biomass conference. Biomass for energy, industry and climate protection, 17–21 June 2002, Amsterdam, The Netherlands, Proceedings, vol 1, pp 396–399

    Google Scholar 

  • Brandt P, Larsen E (2000) High tar reduction in a two-stage gasifier. Energy Fuels 14:816–819

    Article  CAS  Google Scholar 

  • Bridle TR, Hertle CK (1988) Oil from sludge: a cost-effective sludge management system. Water, AWA, Australia, Aug, p 32

    Google Scholar 

  • Brunner G (2009) Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes. J Supercrit Fluids 47(3):373–381

    Article  CAS  Google Scholar 

  • CANMET Energy Technology Centre (2005) Pulp and paper sludge to energy – preliminary assessment of technologies. Canada

    Google Scholar 

  • Carre J, Lacrosse L, Schenkel Y, Rurihose F (1989) Biomass fuels and gasification. In: Ferrero GL, Maniatis K, Buekens A, Bridgwater AV (eds) Pyrolysis and gasification. Elsevier, London, p 83

    Google Scholar 

  • Cheremisinoff NP (2002) Handbook of water and wastewater treatment technologies. Elsevier

    Google Scholar 

  • Chung J, Lee M, Ahn J, Bae W, Lee YW, Shim H (2009) Effects of operational conditions on sludge degradation and organic acids formation in low-critical wet air oxidation. J Hazard Mater 162(1):10–16

    Article  CAS  Google Scholar 

  • Collyer MJ, Kubes GJ, Berk D (1997) Catalytic wet air oxidation of thermomechanical pulping sludge. J Pulp Pap Sci 23(11):522–527

    Google Scholar 

  • Cooper SP, Folster HG, Gairns SA, Hauptmann EG (1997) Treatment of lagoon sludge, primary clarifier sludge, and bleach plant effluent by supercritical water oxidation. Pulp Pap Can 98(10):37–41

    CAS  Google Scholar 

  • Czernik S, Bridgewater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuels 18(2):590–598

    Article  CAS  Google Scholar 

  • Dahlin J (2002) Oxidation of deinking sludge in supercritical water in practice. Managing Pulp and Paper Process Residues, Barcelona

    Google Scholar 

  • Dayton D (2002) A review of the literature on catalytic biomass tar destruction-milestone completion report, NREL/TP-510-32815

    Google Scholar 

  • De Bekker PH, Van den Berg JJ (1988) Wet oxidation as the alternative for sewage sludge treatment. In: Colin F, Newman PJ, Spinosa L (eds) Thermal treatment of sludges. E. Guyot SA, Brussels, pp 78–93

    Google Scholar 

  • Debellefontaine H, Foussard JN (2000) Wet air oxidation for the treatment of industrial wastes. Chemical aspects, reactor design and industrial applications in Europe. Waste Manag 20:15–25

    Article  CAS  Google Scholar 

  • Demirbas A (2007) Progress and recent trends in biofuels. Prog Energy Combust Sci 33(1):1–18

    Article  CAS  Google Scholar 

  • Deviatkin I (2013) Wastewater treatment and deinking sludge utilization possibilities for energy and material recovery in the Leningrad region. Master’s thesis Lappeenranta University of Technology

    Google Scholar 

  • Dry ME (1999) Fischer-Tropsch reactions and the environment. Appl Catal A Gen 189:185–190

    Article  CAS  Google Scholar 

  • Durai-Swamy K, Warren DW, Mansour MN (1990) Indirect steam gasification of paper mill sludge waste. TAPPI Eng Conf Proc Seattle 1:111–119

    Google Scholar 

  • Durai-Swamy K, Warren DW, Mansour MN (1991) Indirect steam gasification of paper mill sludge waste. Tappi J 74(10):137–143

    Google Scholar 

  • European Commission (2001) Integrated Pollution Prevention and Control (IPPC). Reference document on best available techniques in the pulp and paper industry. Institute for Prospective Technological Studies, Seville

    Google Scholar 

  • Fang Z, Koziński JA (2000) Phase behavior and combustion of hydrocarbon-contaminated sludge in supercritical water at pressure up to 822Mpa and temperatures up to 535 °C. Proceedings of the Combustion Institute 28, pp 2717–2725

    Google Scholar 

  • Fio Rito WA (1993) Destructive distillation paper mill sludge management alternatives. TAPPI Press, Atlanta, pp 367–369, Proceedings, Recycling Symposium

    Google Scholar 

  • Frederik WMJ, Iisa K, Lundy JR, O'Connor WK, Reis K, Scott AT, Sinquefield SA, Sricharoenchaikul V, Van Voren CA (1996) Energy and materials recovery from recycled paper sludge. TAPPI J 79(6):123–131

    Google Scholar 

  • Furness DT, Hoggett LA, Judd SJ (2000) Thermochemical treatment of sewage sludge. J CIWEM 14:57–65

    CAS  Google Scholar 

  • Fytili D, Zabaniotou A (2008) Utilization of sewage sludge in EU application of old and new methods—a review. Renew Sustain Energy Rev 12(1):116–140

    Article  CAS  Google Scholar 

  • Garcia-Alba L, Torri C, Fabbri D, Kersten SRA, Brilman DWF (2013) Microalgae growth on the aqueous phase from Hydrothermal Liquefaction of the same microalgae. Chem Eng J 228:214–223

    Article  CAS  Google Scholar 

  • Gasafi E, My R, Kruse A, Schebek L (2008) Economic analysis of sewage sludge gasification in supercritical water for hydrogen production. Biomass Bioenergy 32(12):1085–1096

    Article  CAS  Google Scholar 

  • General Atomics (1997) Sewage sludge gasification in supercritical water. Final report, US DOE Cooperative Agreement, no. DE-FC36-97GO10216

    Google Scholar 

  • Gidner A, Stenmark L (2002) Oxidation of de-inking sludge in supercritical water. In: Workshop of managing pulp and paper process residues, Barcelona

    Google Scholar 

  • Gidner A, Stenmark L, Carlsson K (2001) Treatment of different wastes by supercritical water oxidation. In: Sweden, Presented at the twentieth IT3 conference, 14–18 May 2001, Philadelphia, USA

    Google Scholar 

  • Giudici D, Maugans C (2000) Improvement of industrial synthesis of methyl methacrylate application of a Wet Air Oxidation Process (WAO). La Chemica e L’Industria

    Google Scholar 

  • Griffith JW, Raymond DH (2002) The first commercial supercritical water oxidation sludge processing plant. Waste Manag 22:453–459

    Article  CAS  Google Scholar 

  • Higman C, Burgt M (2008) Gasification, 2nd edn. Gulf Professional Publishing, Amsterdam

    Google Scholar 

  • Hii K, Baroutian S, Parthasarathy R, Gapes DJ, Eshtiaghi N (2013) A review of wet air oxidation and thermal hydrolysis technologies in sludge treatment, bioresource technology (2013). doi: http://dx.doi.org/10.1016/j.biortech.2013.12.066

  • Indrawan B, Prawisudha P, Yoshikawa K (2011) J Jpn Inst Energy 90:1171–1182

    Article  Google Scholar 

  • Izumizaki Y, Chul Park K, Tomiyasu H, Tachibana Y, Fujii Y (2005) Organic decomposition in supercritical water by an aid of ruthenium (IV) oxide as a catalyst – exploitation of biomass resources for hydrogen production. Prog Nucl Energy 47:544–552

    Article  CAS  Google Scholar 

  • Kandaswamy DS, Warren DW, Mansour MN (1991) Indirect steam gasification of paper mill sludge waste. Tappi J 74(10):137–143

    Google Scholar 

  • Kay M (2002) Development of waste management options for paper sludge. In: 4th annual Dutch International Paper and board Technology Event. Pira International

    Google Scholar 

  • Kay M (2003) What to do with sludge? It’s best to determine local needs before choosing an option. Pulp Pap Int 45(8):19–21

    Google Scholar 

  • Kimura T, Miyazawa T, Nishikawa J, Kato S, Okumura K, Miyao T, Naito S, Kunimori K, Tomishige K (2006) Development of Ni catalysts for tar removal by stream gasification of biomass. Appl Catal B Environ 68:160–170

    Article  CAS  Google Scholar 

  • Kranich WL (1984) Conversion of sewage sludge to oil by hydroliquefaction. EPA-600/2-84-010. Report for the U.S. EPA, Cincinnati

    Google Scholar 

  • Krause J, Levert P (2004) Deep bed bark/sludge combustion outperforms and cuts costs: a high-performance grate and combustion system for mill residues. In: Proceedings of the PAPTAC 90th annual meetings, Montreal, pp A1129–A1134

    Google Scholar 

  • Kruse A, Dinjus E (2007) Hot compressed water as reaction medium and reactant – properties and synthesis reactions. J Supercrit Fluids 39:362–380

    Article  CAS  Google Scholar 

  • Lewis MF (1975) Sludge pyrolysis for energy recovery and pollution control. In: Proceedings of the national conference on municipal sludge management and disposal. Anaheim, p 146

    Google Scholar 

  • Lomax D, Commandeur JM, Arisz PW, Boon JJ (1991) Characterization of oligomers and sugar ring-cleavage products in the pyrolysate of cellulose. J Anal Appl Pyrolysis 19:65–79

    Article  CAS  Google Scholar 

  • Lou R, Wu S, Gaojin L, Yang Q (2012) Energy and resource utilization of deinking sludge pyrolysis. Appl Energy 90(1):46–50

    Article  CAS  Google Scholar 

  • Luck F (1999) Wet air oxidation: past, present and future. Catal Today 53(1):81–91

    Article  CAS  Google Scholar 

  • Mahmood T, Elliott A (2006) A review of secondary sludge reduction technologies for the pulp and paper industry. Water Res 40:2093–2112

    Article  CAS  Google Scholar 

  • Maugans C, Ellis C (2004) Age old solution for today’s SO2 and NOx pollution engineering, April 2004

    Google Scholar 

  • Minett S, Fenwick K (2001) Supercritical water oxidation—environmental organic waste disposal. Pulp Pap Asia 4:20–21

    Google Scholar 

  • Modell M (1982) Processing methods for the oxidation of organics in supercritical water oxidation. US Patent no. 4,338,199

    Google Scholar 

  • Modell M (1990) Treatment of pulp mill sludges by supercritical water oxidation. Paper no. DOE/CE/40914-T1

    Google Scholar 

  • Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20:848–889

    Article  CAS  Google Scholar 

  • Monte MC, Fuente E, Blanco A, Negro C (2009) Waste management from pulp and paper production in the European Union. Waste Manag 29(1):293–308

    Article  CAS  Google Scholar 

  • Mountouris A, Voutsas E, Tassios D (2008) Plasma gasification of sewage sludge: process development and energy consumption. Energy Convers Manag 49(8):2264–2271

    Article  CAS  Google Scholar 

  • Murakami T (1998) Recent advances in sludge treatment techniques. Water Qual Int 9(10):23–24

    Google Scholar 

  • Muthuraman M, Namioka T, Yoshikawa K (2010) Comparative study on co-combustion performance of municipal solid waste and Indonesian coal with high ash Indian coal: a thermogravimetric analysis. Fuel Process Technol 91:550–558

    Article  CAS  Google Scholar 

  • Myréen L, Rönnlund I, Lundqvist K, Ahlbeck J, Westerlund T (2010) Waste to energy by industrially integrated SCWG – effect of process parameters on gasification of industrial biomass. Chem Eng Trans 19:7–12

    Google Scholar 

  • Myréen L, Rönnlund I, Westerlund T (2011) Integration of SuperCritical Water Gasification (SCWG) in pulp and paper production – A feasibility study of integration options. Chem Eng Trans 25:429–434. doi:10.3303/CET1125072

    Google Scholar 

  • Nakhshiniev B, Gonzales HB, Yoshikawa K (2012) Hydrothermal treatment of date palm lignocellulose residue for organic fertilizer conversion: effect on cell wall and aerobic degradation rate. Compost Sci Util 2012(20):245–253

    Article  Google Scholar 

  • Namioka T, Morohashi Y, Yamane R, Yoshikawa KJ (2009) Hydrothermal treatment of dewatered sewage sludge cake for solid fuel production. Environ Eng 4:68–77

    Article  Google Scholar 

  • Naqvi M, Yan J, Fröling M (2010) Bio-refinery system of DME or CH4 production from black liquor gasification in pulp mills. Bioresour Technol 101:937–944

    Article  CAS  Google Scholar 

  • Nunes SM, Paterson N, Dugwell DR, Kandiyoti R (2007) Tar formation and destruction in a simulated downdraft fixed-bed gasifier: reactor design and initial results. Energy Fuels 21:3028–3035

    Article  CAS  Google Scholar 

  • Ohtsuka Y, Xu C, Kong D, Tsubouchi N (2004) Decomposition of ammonia with iron and calcium catalysts supported on coal chars. Fuel 83(6):685–692

    Article  CAS  Google Scholar 

  • Olexseyr A (1975) Pyrolysis of sewage sludge. In: Proceedings of the national conference on municipal sludge management and disposal. Anaheim, Aug. p 139

    Google Scholar 

  • Orr D, Maxwell D (2000) A comparison of gasification and incineration of hazardous wastes. U.S. DOE DCN 99.803931.02

    Google Scholar 

  • Ouadi M, Brammer JG, Kay M, Hornung A (2013) Fixed bed downdraft gasification of paper industry wastes. Appl Energy 103:692–699. doi:10.1016/j.apenergy.2012.10.038

    Article  CAS  Google Scholar 

  • Perry R, Green D (1999) Perry’s chemical engineers’ handbook, 7th edn. McGraw Hill, New York, pp 23–34

    Google Scholar 

  • Prawisudha P, Namioka T, Yoshikawa K (2012) Coal alternative fuel production from municipal solid wastes employing hydrothermal treatment. Appl Energy 2012(90):298–304

    Article  Google Scholar 

  • Rezaiyan J, Cheremisinoff NP (2005) Gasification technologies – a primer for engineers and scientists. CRC Press Taylor & Francis Groups, Boca Raton

    Google Scholar 

  • Rönnlund I, Myréen L, Lundqvist K, Ahlbeck J, Westerlund T (2010) Waste to energy by industrially integrated supercritical water gasification – effects of alkali salts in residual by-products from the pulp and paper industry. Energy. doi:10.1016/j.energy.2010.03.027

    Google Scholar 

  • Roos C (2008) Clean heat and power using biomass gasification for industrial and agricultural projects. U.S. DOE Clean Energy Application Center. WSUEEP08-033, Rev. 5

    Google Scholar 

  • Rulkenes WH (1989) Feasibility study of wet oxidation processes for treatment of six selected waste streams. Dutch Rijkswaterstaat Report No: DBW/RIZA 89–079

    Google Scholar 

  • Sadaka S (2008) Gasification of Biomass, [online] Available at: http://bioweb.sungrant.org/Technical/Biopower/Technologies/Gasification/Default.htm

  • Sakaguchi M, Laursen K, Nakagawa H, Miura K (2008) Hydrothermal upgrading of Loy Yang Brown coal – effect of upgrading conditions on the characteristics of the products fuel process. Technology 89(4):391–396

    CAS  Google Scholar 

  • Schmieder H, Abeln J (1999) Supercritical water oxidation: state of the art Chem Eng Technol; Chemical Engineering and Technology 1999. Wiley-Vch Verlag Gmbh, Weinheim, Ger, Bd. 22, Nr. 11, 1999, Seiten 903-908, XP009003188

    Google Scholar 

  • Shanableh A (2000) Production of useful organic matter from sludge hydrothermal treatment. Water Res 34(3):945–951

    Article  CAS  Google Scholar 

  • Shie JL, Liau YR, Lin KL Chang CY (2014) 4th international conference on future environment and energy international conference on Future Environment and Energy IPCBEE vol 61 (2014) © (2014) IACSIT Press, Singapore. doi:10.7763/IPCBEE. 2014. V61. 7

  • Spinosa L, Kempa ES, Okuno N, Vesilind PA (1994) Global sludge management: a status report and perspective. Water Sci Technol 30(8):73–80

    CAS  Google Scholar 

  • Stark K, Plaza E, Hultmank B (2006) Phosphorus release from ash, dried sludge and sludge residue from supercritical water oxidation by acid or base. Chemosphere 62:827–832

    Article  CAS  Google Scholar 

  • Strong P, Mcdonald B, Gapes D (2011) Combined thermochemical and fermentative destruction of municipal biosolids: a comparison between thermal hydrolysis and wet oxidative pre-treatment. Bioresour Technol 102:5520–5527

    Article  CAS  Google Scholar 

  • Svanström M, Fröling M, Modell M, Peters WA, Tester J (2004) Environmental assessment of supercritical water oxidation of sewage sludge. Resour Conserv Recycl 41:321–338

    Article  Google Scholar 

  • Tsai WT, Lee MK, Chang YM (2007) Fast pyrolysis of rice husk: product yields and compositions. Bioresour Technol 98:22–28

    Article  CAS  Google Scholar 

  • US EPA (1979) Process design manual for sludge treatment and disposal

    Google Scholar 

  • US EPA (1994) A plain english guide to the EPA part 503 biosolids rule. U.S. EPA document no. 832-R93-003, September 1994

    Google Scholar 

  • US EPA (2012) Technology assessment report aqueous sludge gasification technologies EPA/600/R-12/540 June 2012

    Google Scholar 

  • Vitolo S, Seggiani M, Frediani P, Ambrosini G, Politi L (1999) Catalytic upgrading of pyrolytic oils to fuel over different zeolites. Fuel 78:1147–1159

    Article  CAS  Google Scholar 

  • Xu C, Lancaster J (2008) Conversion of secondary pulp/paper sludge powder to liquid oil products for energy recovery by direct liquefaction in hot-compressed water. Water Res 42:1571–1582

    Article  CAS  Google Scholar 

  • Xu C, Lancaster J (2009) Treatment of secondary pulp and paper sludge for energy recovery. In: DuBois E, Nercier A (eds) Energy recovery. Nova Science Publishers Inc., New York, pp 187–212

    Google Scholar 

  • Xu C, Lancaster J (2012) Treatment of secondary sludge for energy recovery. [Online] Available at: http://www.eng.uwo.ca/fbg/Publications/book%20chapter_xu%20and%20lancaster.pdf. Accessed 15 Dec 2013

  • Xu C, Tsubouchi N, Ohtsuka Y (2005) Catalytic decomposition of ammonia with metal cations present naturally in low rank coals. Fuel 84(8–10):1957–1967

    Article  CAS  Google Scholar 

  • Zainal Z, Ali R, Lean C, Seetharamu K (2001) Prediction of performance of a downdraft gasifier using equilibrium modeling for different biomass materials. Energy Convers Manag 42:1499–1515

    Article  CAS  Google Scholar 

  • Zhang LH, Xu CB, Champagne P (2010) Energy recovery from secondary pulp/paper-mill sludge and sewage sludge with supercritical water treatment. Bioresour Technol 101:2713–2721

    Article  CAS  Google Scholar 

  • Zimmerman FJ, Diddams DG (1960) The Zimmerman process and its applications in the pulp and paper industry. TAPPI J 43(8):710–715

    CAS  Google Scholar 

  • Zou LY, Li Y, Hung YT (2007) Wet air oxidation for waste treatment. In: Wang LK, Hung YT (eds) Handbook of environmental engineering. Advanced physicochemical treatment technologies, vol 5. Humana Press, Totowa, pp 575–610

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bajpai, P. (2015). New Technologies for Energy Recovery from Waste. In: Management of Pulp and Paper Mill Waste. Springer, Cham. https://doi.org/10.1007/978-3-319-11788-1_5

Download citation

Publish with us

Policies and ethics