Skip to main content

Transplantation of Adipose-Derived Stem Cells in Stroke

  • Chapter
  • First Online:
Cellular Therapy for Stroke and CNS Injuries

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR))

  • 957 Accesses

Abstract

Not only is stroke second only to cardiac ischemia as a leading cause of death worldwide, but it also drastically impaired the quality of life of the survivors through its crippling neurological sequelae which account for the third leading cause of disability. Instead of merely a loss of functioning neurons from ischemia, stroke triggers a cascade of adverse events including inflammation, oxidative stress, and apoptosis that perpetuates the initial ischemic damage. Current therapeutic strategies, including the use of thrombolytic agents and other non-pharmaceutical approaches, have their limitations either because of the risk of complications or focusing only on the prevention of brain damage and rehabilitation. More importantly, none has been convincingly shown to improve neurological outcome in patients with stroke once the brain tissue is infarcted. Accumulating evidence has indicated that, instead of being only neuroprotective, stem cells actually possess neurorestorative function for promoting recovery of the injured brain tissue. Accordingly, cell transplant therapy with adipose-derived mesenchymal stem cells (ADSC) has recently emerged as a potentially feasible therapeutic option not only because of their abundance and relative ease of being harvested, but also because of the possibility of autologous implantation and their demonstrated multiple beneficial biological actions against stroke in experimental settings, namely paracrine effects, transdifferentiation, and immunomodulation, that could enhance brain plasticity such as neurogenesis, remyelination, synaptogenesis, and angiogenesis in the recovery process. The nature and source of ADSC as well as their demonstrated therapeutic potential against stroke, the clinical perspective in stroke treatment, and the potential risks are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADSC:

Adipose-derived mesenchymal stem cells

APC:

Antigen-presenting cell

BDNF:

Brain-derived neurotrophic factor

bFGF:

Basic fibroblast growth factor

BMP2:

Bone morphogenetic protein 2

CSPG:

Chondroitin sulphate proteoglycans

CXCR4:

Chemokine receptor type 4

DCX:

Doublecortin

FACS:

Fluorescence-activated cell sorting

FGF2:

Fibroblast growth factor 2

G-CSF:

granulocyte colony-stimulating factor

GDNF:

Glial derived neurotrophic factor

GFAP:

Glial fibrillary acidic protein

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

HGF:

Hepatocyte growth factor

IDO:

Indoleamine-2,3-dioxygenase

IGF-1:

Insulin-like growth factor-1

IL:

Interleukin

IL-1R:

Interleukin 1 receptor

iPSC:

Induced pluripotent stem cells

MACS:

Magnetic activated cell sorting

MAP2:

Microtubule-associated protein 2

MCAO:

Middle cerebral artery occlusion

MHC-II:

Major histocompatibility complex class II

NeuN:

Neuronal nuclei

NF:

Neurofilament

NGF:

Nerve growth factor

NT-3:

Neurotrophin-3

Olig-2:

Oligodendrocyte

PAI-1:

Plasminogen activator inhibitor-1

ROS:

Reactive oxygen species

rtPA:

Recombinant tissue plasminogen activator

SDF-1:

Stromal cell-derived factor 1

SVF:

Stromal vascular fraction

SYP:

Synaptophysin

TGF-β1:

Transforming growth factor beta 1

TLR-4:

Toll-like receptor-4

TNF-alpha:

Tumor necrosis factor-alpha

VCAM-1:

Vascular cell adhesion molecule 1

VEGF:

Vascular endothelial growth factor

vWF:

Von Willebran factor

References

  • Abdanipour A, Tiraihi T, Delshad A (2011) Trans-differentiation of the adipose tissue-derived stem cells into neuron-like cells expressing neurotrophins by selegiline. Iran Biomed J 15:113–121

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ahmadi N, Razavi S, Kazemi M, Oryan S (2012) Stability of neural differentiation in human adipose derived stem cells by two induction protocols. Tissue Cell 44:87–94

    CAS  PubMed  Google Scholar 

  • Andres RH, Horie N, Slikker W, Keren-Gill H, Zhan K, Sun G, Manley NC, Pereira MP, Sheikh LA, McMillan EL, Schaar BT, Svendsen CN, Bliss TM, Steinberg GK (2011) Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain. Brain 134:1777–1789

    PubMed Central  PubMed  Google Scholar 

  • Aoki T, Ohnishi H, Oda Y, Tadokoro M, Sasao M, Kato H, Hattori K, Ohgushi H (2010) Generation of induced pluripotent stem cells from human adipose-derived stem cells without c-MYC. Tissue Eng Part A 16:2197–2206

    CAS  PubMed  Google Scholar 

  • Araki R, Hoki Y, Uda M, Nakamura M, Jincho Y, Tamura C, Sunayama M, Ando S, Sugiura M, Yoshida MA, Kasama Y, Abe M (2011) Crucial role of c-Myc in the generation of induced pluripotent stem cells. Stem Cells 29:1362–1370

    CAS  PubMed  Google Scholar 

  • Aydin A, Duruksu G, Erman G, Subasi C, Aksoy A, Unal ZS, Karaoz E (2014) Neurogenic differentiation capacity of subacromial bursal tissue-derived stem cells. J Orthop Res 32:151–158

    CAS  PubMed  Google Scholar 

  • Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F, Osaki M, Kawamata M, Kato T, Okochi H, Ochiya T (2008) IFATS collection: in vivo therapeutic potential of human adipose tissue mesenchymal stem cells after transplantation into mice with liver injury. Stem Cells 26:2705–2712

    CAS  PubMed  Google Scholar 

  • Bang OY, Lee JS, Lee PH, Lee G (2005) Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 57:874–882

    PubMed  Google Scholar 

  • Bjorklund A, Lindvall O (2000) Cell replacement therapies for central nervous system disorders. Nat Neurosci 3:537–544

    CAS  PubMed  Google Scholar 

  • Bringas ML, Suarez C, Sanchez C, Alvarez LM, Valdes P, Salazar S, Chongo D, Jahanshahi M (2011) Cognitive changes after stem cell transplantation in a patient with subcortical stroke. BMJ Case Rep 2011:bcr0320113944

    Google Scholar 

  • Buschmann J, Gao S, Harter L, Hemmi S, Welti M, Werner CM, Calcagni M, Cinelli P, Wanner GA (2013) Yield and proliferation rate of adipose-derived stromal cells as a function of age, body mass index and harvest site-increasing the yield by use of adherent and supernatant fractions? Cytotherapy 15:1098–1105

    CAS  PubMed  Google Scholar 

  • Cairns K, Finklestein SP (2003) Growth factors and stem cells as treatments for stroke recovery. Phys Med Rehabil Clin N Am 14:S135–142

    Google Scholar 

  • Calio ML, Marinho DS, Ko GM, Rodrigues R, Carbonel AF, Oyama LM, Ormanji M, Guirao TP, Calio PL, Reis LA, de Jesus Simoes M, do Nascimento TL, Teixeira Ferreira A, Bertoncini CR (2014) Transplantation of bone marrow mesenchymal stem cells decreases oxidative stress, apoptosis, and hippocampal damage in brain of a spontaneous stroke model. Free Radic Biol Med 70:141–154

    CAS  PubMed  Google Scholar 

  • Cardozo A, Ielpi M, Gomez D, Argibay P (2010) Differential expression of Shh and BMP signaling in the potential conversion of human adipose tissue stem cells into neuron-like cells in vitro. Gene Expr 14:307–319

    PubMed  Google Scholar 

  • Chang DJ, Oh SH, Lee N, Choi C, Jeon I, Kim HS, Shin DA, Lee SE, Kim D, Song J (2013) Contralaterally transplanted human embryonic stem cell-derived neural precursor cells (ENStem-A) migrate and improve brain functions in stroke-damaged rats. Exp Mol Med 45:e53

    PubMed Central  PubMed  Google Scholar 

  • Chen C, Wang Y, Yang GY (2013) Stem cell-mediated gene delivering for the treatment of cerebral ischemia: progress and prospectives. Curr Drug Targets 14:81–89

    CAS  PubMed  Google Scholar 

  • Chen DC, Lin SZ, Fan JR, Lin CH, Lee W, Lin CC, Liu YJ, Tsai CH, Chen JC, Cho DY, Lee CC, Shyu WC (2014a) Intracerebral implantation of autologous peripheral blood stem cells in stroke patients: a randomized phase II study. Cell Transplant (in press)

    Google Scholar 

  • Chen F, Qi Z, Luo Y, Hinchliffe T, Ding G, Xia Y, Ji X (2014b) Non-pharmaceutical therapies for stroke: mechanisms and clinical implications. Prog Neurobiol 115:246–269

    PubMed  Google Scholar 

  • Chen J, Tang YX, Liu YM, Chen J, Hu XQ, Liu N, Wang SX, Zhang Y, Zeng WG, Ni HJ, Zhao B, Chen YF, Tang ZP (2012) Transplantation of adipose-derived stem cells is associated with neural differentiation and functional improvement in a rat model of intracerebral hemorrhage. CNS Neurosci Ther 18:847–854

    PubMed  Google Scholar 

  • Chia CT, Theodorou SJ (2012) 1000 consecutive cases of laser-assisted liposuction and suction-assisted lipectomy managed with local anesthesia. Aesthetic Plast Surg 36:795–802

    PubMed  Google Scholar 

  • Cho YJ, Song HS, Bhang S, Lee S, Kang BG, Lee JC, An J, Cha CI, Nam DH, Kim BS, Joo KM (2012) Therapeutic effects of human adipose stem cell-conditioned medium on stroke. J Neurosci Res 90:1794–1802

    CAS  PubMed  Google Scholar 

  • Choudhery MS, Badowski M, Muise A, Pierce J, Harris DT (2014) Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. J Transl Med 12:8

    PubMed Central  PubMed  Google Scholar 

  • Correa P, Felix R, Mendonca ML, Freitas G, Azevedo J, Dohmann H, Alves S, Mesquita C (2005) Dual-head coincidence gamma camera FDG-PET before and after autologous bone marrow mononuclear cell implantation in ischaemic stroke. Eur J Nucl Med Mol Imaging 32:999

    PubMed  Google Scholar 

  • Cuevas-Diaz Duran R, Gonzalez-Garza MT, Cardenas-Lopez A, Chavez-Castilla L, Cruz-Vega DE, Moreno-Cuevas JE (2013) Age-related yield of adipose-derived stem cells bearing the low-affinity nerve growth factor receptor. Stem Cells Int 2013:372164

    PubMed Central  PubMed  Google Scholar 

  • De Barros S, Dehez S, Arnaud E, Barreau C, Cazavet A, Perez G, Galinier A, Casteilla L, Planat-Benard V (2013) Aging-related decrease of human ASC angiogenic potential is reversed by hypoxia preconditioning through ROS production. Mol Ther 21:399–408

    CAS  PubMed  Google Scholar 

  • del Zoppo GJ (2009) Inflammation and the neurovascular unit in the setting of focal cerebral ischemia. Neuroscience 158:972–982

    CAS  PubMed Central  PubMed  Google Scholar 

  • Del Zoppo GJ, Saver JL, Jauch EC, Adams HP, Jr. (2009) Expansion of the time window for treatment of acute ischemic stroke with intravenous tissue plasminogen activator: a science advisory from the American Heart Association/American Stroke Association. Stroke 40:2945–2948

    Google Scholar 

  • Ding DC, Chou HL, Hung WT, Liu HW, Chu TY (2013) Human adipose-derived stem cells cultured in keratinocyte serum free medium: Donor’s age does not affect the proliferation and differentiation capacities. J Biomed Sci 20:59

    CAS  PubMed Central  PubMed  Google Scholar 

  • Drury-Stewart D, Song M, Mohamad O, Guo Y, Gu X, Chen D, Wei L (2013) Highly efficient differentiation of neural precursors from human embryonic stem cells and benefits of transplantation after ischemic stroke in mice. Stem Cell Res Ther 4:93

    PubMed Central  PubMed  Google Scholar 

  • Egashira Y, Sugitani S, Suzuki Y, Mishiro K, Tsuruma K, Shimazawa M, Yoshimura S, Iwama T, Hara H (2012) The conditioned medium of murine and human adipose-derived stem cells exerts neuroprotective effects against experimental stroke model. Brain Res 1461:87–95

    CAS  PubMed  Google Scholar 

  • Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett DA, Moran AE, Sacco RL, Anderson L, Truelsen T, O’Donnell M, Venketasubramanian N, Barker-Collo S, Lawes CM, Wang W, Shinohara Y, Witt E, Ezzati M, Naghavi M, Murray C (2014) Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet 383:245–254

    PubMed Central  PubMed  Google Scholar 

  • Feisst V, Brooks AE, Chen CJ, Dunbar PR (2014) Characterization of mesenchymal progenitor cell populations directly derived from human dermis. Stem Cells Dev 23(6):631–642

    CAS  PubMed  Google Scholar 

  • Friedenstein AJ, Deriglasova UF, Kulagina NN, Panasuk AF, Rudakowa SF, Luria EA, Ruadkow IA (1974) Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 2:83–92

    CAS  PubMed  Google Scholar 

  • Gao S, Zhao P, Lin C, Sun Y, Wang Y, Zhou Z, Yang D, Wang X, Xu H, Zhou F, Cao L, Zhou W, Ning K, Chen X, Xu J (2013) Differentiation of human-adipose derived stem cells into neuron-like cells which are compatible with photocurable three-dimensional scaffolds. Tissue Eng Part A 20(7–8):1271–1284

    Google Scholar 

  • Gardner OF, Archer CW, Alini M, Stoddart MJ (2013) Chondrogenesis of mesenchymal stem cells for cartilage tissue engineering. Histol Histopathol 28:23–42

    CAS  PubMed  Google Scholar 

  • Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB (2013) Heart disease and stroke statistics–2013 update: a report from the American Heart Association. Circulation 127:e6–e245

    PubMed  Google Scholar 

  • Gutierrez-Fernandez M, Rodriguez-Frutos B, Alvarez-Grech J, Vallejo-Cremades MT, Exposito-Alcaide M, Merino J, Roda JM, Diez-Tejedor E (2011) Functional recovery after hematic administration of allogenic mesenchymal stem cells in acute ischemic stroke in rats. Neuroscience 175:394–405

    CAS  PubMed  Google Scholar 

  • Gutierrez-Fernandez M, Fuentes B, Rodriguez-Frutos B, Ramos-Cejudo J, Vallejo-Cremades MT, Diez-Tejedor E (2012) Trophic factors and cell therapy to stimulate brain repair after ischaemic stroke. J Cell Mol Med 16:2280–2290

    CAS  PubMed  Google Scholar 

  • Gutierrez-Fernandez M, Rodriguez-Frutos B, Otero-Ortega L, Ramos-Cejudo J, Fuentes B, Diez-Tejedor E (2013a) Adipose tissue-derived stem cells in stroke treatment: from bench to bedside. Discov Med 16:37–43

    PubMed  Google Scholar 

  • Gutierrez-Fernandez M, Rodriguez-Frutos B, Ramos-Cejudo J, Teresa Vallejo-Cremades M, Fuentes B, Cerdan S, Diez-Tejedor E (2013b) Effects of intravenous administration of allogenic bone marrow- and adipose tissue-derived mesenchymal stem cells on functional recovery and brain repair markers in experimental ischemic stroke. Stem Cell Res Ther 4:11

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hacke W, Donnan G, Fieschi C, Kaste M, von Kummer R, Broderick JP, Brott T, Frankel M, Grotta JC, Haley EC Jr Kwiatkowski T, Levine SR, Lewandowski C, Lu M, Lyden P, Marler JR, Patel S, Tilley BC, Albers G, Bluhmki E, Wilhelm M, Hamilton S, Investigators AT, Investigators ET, Investigators Nr-PSG (2004) Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA stroke trials. Lancet 363:768–774

    PubMed  Google Scholar 

  • Han H, Chang SK, Chang JJ, Hwang SH, Han SH, Chun BH (2011) Intrathecal injection of human umbilical cord blood-derived mesenchymal stem cells for the treatment of basilar artery dissection: a case report. J Med Case Rep 5:562

    PubMed Central  PubMed  Google Scholar 

  • Hicok KC, Hedrick MH (2011) Automated isolation and processing of adipose-derived stem and regenerative cells. Methods Mol Biol 702:87–105

    CAS  PubMed  Google Scholar 

  • Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, Waxman SG, Kocsis JD (2011) Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain 134:1790–1807

    PubMed Central  PubMed  Google Scholar 

  • Huang L, Wu ZB, Zhuge Q, Zheng W, Shao B, Wang B, Sun F, Jin K (2014) Glial scar formation occurs in the human brain after ischemic stroke. Int J Med Sci 11:344–348

    PubMed Central  PubMed  Google Scholar 

  • Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17:796–808

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ikegame Y, Yamashita K, Hayashi S, Mizuno H, Tawada M, You F, Yamada K, Tanaka Y, Egashira Y, Nakashima S, Yoshimura S, Iwama T (2011) Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy. Cytotherapy 13:675–685

    CAS  PubMed  Google Scholar 

  • Janjanin S, Djouad F, Shanti RM, Baksh D, Gollapudi K, Prgomet D, Rackwitz L, Joshi AS, Tuan RS (2008) Human palatine tonsil: a new potential tissue source of multipotent mesenchymal progenitor cells. Arthritis Res Ther 10:R83

    PubMed Central  PubMed  Google Scholar 

  • Jiang Y, Zhu W, Zhu J, Wu L, Xu G, Liu X (2013) Feasibility of delivering mesenchymal stem cells via catheter to the proximal end of the lesion artery in patients with stroke in the territory of the middle cerebral artery. Cell Transplant 22:2291–2298

    PubMed  Google Scholar 

  • Jiang W, Liang G, Li X, Li Z, Gao X, Feng S, Wang X, Liu M, Liu Y (2014) Intracarotid transplantation of autologous adipose-derived mesenchymal stem cells significantly improves neurological deficits in rats after MCAo. J Mater Sci Mater Med 25:1357–1366

    Google Scholar 

  • Kang SK, Jun ES, Bae YC, Jung JS (2003a) Interactions between human adipose stromal cells and mouse neural stem cells in vitro. Brain Res Dev Brain Res 145:141–149

    CAS  PubMed  Google Scholar 

  • Kang SK, Lee DH, Bae YC, Kim HK, Baik SY, Jung JS (2003b) Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats. Exp Neurol 183:355–366

    CAS  PubMed  Google Scholar 

  • Kang SK, Putnam LA, Ylostalo J, Popescu IR, Dufour J, Belousov A, Bunnell BA (2004) Neurogenesis of Rhesus adipose stromal cells. J Cell Sci 117:4289–4299

    CAS  PubMed  Google Scholar 

  • Kim JM, Lee ST, Chu K, Jung KH, Song EC, Kim SJ, Sinn DI, Kim JH, Park DK, Kang KM, Hyung Hong N, Park HK, Won CH, Kim KH, Kim M, Kun Lee S, Roh JK (2007) Systemic transplantation of human adipose stem cells attenuated cerebral inflammation and degeneration in a hemorrhagic stroke model. Brain Res 1183:43–50

    CAS  PubMed  Google Scholar 

  • Kompisch KM, Lange C, Steinemann D, Skawran B, Schlegelberger B, Muller R, Schumacher U (2010) Neurogenic transdifferentiation of human adipose-derived stem cells? a critical protocol reevaluation with special emphasis on cell proliferation and cell cycle alterations. Histochem Cell Biol 134:453–468

    CAS  PubMed  Google Scholar 

  • Kondziolka D, Wechsler L, Goldstein S, Meltzer C, Thulborn KR, Gebel J, Jannetta P, DeCesare S, Elder EM, McGrogan M, Reitman MA, Bynum L (2000) Transplantation of cultured human neuronal cells for patients with stroke. Neurology 55:565–569

    CAS  PubMed  Google Scholar 

  • Kranz A, Wagner DC, Kamprad M, Scholz M, Schmidt UR, Nitzsche F, Aberman Z, Emmrich F, Riegelsberger UM, Boltze J (2010) Transplantation of placenta-derived mesenchymal stromal cells upon experimental stroke in rats. Brain Res 1315:128–136

    CAS  PubMed  Google Scholar 

  • Kuhl SJ, Kuhl M (2013) On the role of Wnt/beta-catenin signaling in stem cells. Biochim Biophys Acta 1830:2297–2306

    PubMed  Google Scholar 

  • Lakshmipathy U, Verfaillie C (2005) Stem cell plasticity. Blood Rev 19:29–38

    PubMed  Google Scholar 

  • Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY (2010) A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells 28:1099–1106

    PubMed  Google Scholar 

  • Lee JS, Bae GY, Lee MO, Cha HJ (2012) Oncogenic challenges in stem cells and the link to cancer initiation. Arch Pharm Res 35:235–244

    CAS  PubMed  Google Scholar 

  • Lees JS, Sena ES, Egan KJ, Antonic A, Koblar SA, Howells DW, Macleod MR (2012) Stem cell-based therapy for experimental stroke: a systematic review and meta-analysis. Int J Stroke 7:582–588

    PubMed  Google Scholar 

  • Leu S, Lin YC, Yuen CM, Yen CH, Kao YH, Sun CK, Yip HK (2010) Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats. J Transl Med 8:63

    PubMed Central  PubMed  Google Scholar 

  • Li M, Li S, Yu L, Wu J, She T, Gan Y, Hu Z, Liao W, Xia H (2013a) Bone mesenchymal stem cells contributed to the neointimal formation after arterial injury. PLoS One 8:e82743

    PubMed Central  PubMed  Google Scholar 

  • Li ZM, Zhang ZT, Guo CJ, Geng FY, Qiang F, Wang LX (2013b) Autologous bone marrow mononuclear cell implantation for intracerebral hemorrhage-a prospective clinical observation. Clin Neurol Neurosurg 115:72–76

    PubMed  Google Scholar 

  • Liao D, Gong P, Li X, Tan Z, Yuan Q (2010) Co-culture with Schwann cells is an effective way for adipose-derived stem cells neural transdifferentiation. Arch Med Sci 6:145–151

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu X, Ye R, Yan T, Yu SP, Wei L, Xu G, Fan X, Jiang Y, Stetler RA, Liu G, Chen J (2013) Cell based therapies for ischemic stroke: from basic science to bedside. Prog Neurobiol 115:92–115

    PubMed Central  PubMed  Google Scholar 

  • Liu XL, Zhang W, Tang SJ (2014) Intracranial transplantation of human adipose-derived stem cells promotes the expression of neurotrophic factors and nerve repair in rats of cerebral ischemia-reperfusion injury. Int J Clin Exp Pathol 7:174–183

    PubMed Central  PubMed  Google Scholar 

  • Liu YP, Seckin H, Izci Y, Du ZW, Yan YP, Baskaya MK (2009) Neuroprotective effects of mesenchymal stem cells derived from human embryonic stem cells in transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab 29:780–791

    PubMed  Google Scholar 

  • Lopez-Iglesias P, Blazquez-Martinez A, Fernandez-Delgado J, Regadera J, Nistal M, Miguel MP (2011) Short and long term fate of human AMSC subcutaneously injected in mice. World J Stem Cells 3:53–62

    PubMed Central  PubMed  Google Scholar 

  • Mantovani C, Raimondo S, Haneef MS, Geuna S, Terenghi G, Shawcross SG, Wiberg M (2012) Morphological, molecular and functional differences of adult bone marrow- and adipose-derived stem cells isolated from rats of different ages. Exp Cell Res 318:2034–2048

    CAS  PubMed  Google Scholar 

  • Manzanero S, Santro T, Arumugam TV (2013) Neuronal oxidative stress in acute ischemic stroke: sources and contribution to cell injury. Neurochem Int 62:712–718

    CAS  PubMed  Google Scholar 

  • Marino G, Moraci M, Armenia E, Orabona C, Sergio R, De Sena G, Capuozzo V, Barbarisi M, Rosso F, Giordano G, Iovino F, Barbarisi A (2013) Therapy with autologous adipose-derived regenerative cells for the care of chronic ulcer of lower limbs in patients with peripheral arterial disease. J Surg Res 185:36–44

    PubMed  Google Scholar 

  • Marycz K, Krzak-Ros J, Donesz-Sikorska A, Smieszek A (2013) The morphology, proliferation rate, and population doubling time factor of adipose-derived mesenchymal stem cells cultured on to non-aqueous SiO, TiO, and hybrid sol-gel-derived oxide coatings. J Biomed Mater Res A doi:10.1002/jbm.a.35072.

    Google Scholar 

  • Mason S, Tarle SA, Osibin W, Kinfu Y, Kaigler D (2014) Standardization and safety of alveolar bone-derived stem cell isolation. J Dent Res 93:55–61

    CAS  PubMed  Google Scholar 

  • Melief SM, Geutskens SB, Fibbe WE, Roelofs H (2013a) Multipotent stromal cells skew monocytes towards an anti-inflammatory interleukin-10-producing phenotype by production of interleukin-6. Haematologica 98:888–895

    CAS  PubMed Central  PubMed  Google Scholar 

  • Melief SM, Zwaginga JJ, Fibbe WE, Roelofs H (2013b) Adipose tissue-derived multipotent stromal cells have a higher immunomodulatory capacity than their bone marrow-derived counterparts. Stem Cells Transl Med 2:455–463

    PubMed Central  PubMed  Google Scholar 

  • Molina CA (2011) Reperfusion therapies for acute ischemic stroke: current pharmacological and mechanical approaches. Stroke 42:S16–19

    Google Scholar 

  • Mora-Lee S, Sirerol-Piquer MS, Gutierrez-Perez M, Gomez-Pinedo U, Roobrouck VD, Lopez T, Casado-Nieto M, Abizanda G, Rabena MT, Verfaille C, Prosper F, Garcia-Verdugo JM (2012) Therapeutic effects of hMAPC and hMSC transplantation after stroke in mice. PLoS One 7:e43683

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moriyama M, Moriyama H, Ueda A, Nishibata Y, Okura H, Ichinose A, Matsuyama A, Hayakawa T (2012) Human adipose tissue-derived multilineage progenitor cells exposed to oxidative stress induce neurite outgrowth in PC12 cells through p38 MAPK signaling. BMC Cell Biol 13:21

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moshaverinia A, Xu X, Chen C, Ansari S, Zadeh HH, Snead ML, Shi S (2014) Application of stem cells derived from the periodontal ligament or gingival tissue sources for tendon tissue regeneration. Biomaterials 35:2642–2650

    CAS  PubMed  Google Scholar 

  • Naftali-Shani N, Itzhaki-Alfia A, Landa-Rouben N, Kain D, Holbova R, Adutler-Lieber S, Molotski N, Asher E, Grupper A, Millet E, Tessone A, Winkler E, Kastrup J, Feinberg MS, Zipori D, Pevsner-Fischer M, Raanani E, Leor J (2013) The origin of human mesenchymal stromal cells dictates their reparative properties. J Am Heart Assoc 2:e000253

    PubMed Central  PubMed  Google Scholar 

  • Oki K, Tatarishvili J, Wood J, Koch P, Wattananit S, Mine Y, Monni E, Tornero D, Ahlenius H, Ladewig J, Brustle O, Lindvall O, Kokaia Z (2012) Human-induced pluripotent stem cells form functional neurons and improve recovery after grafting in stroke-damaged brain. Stem Cells 30:1120–1133

    CAS  PubMed  Google Scholar 

  • Ouyang YB, Giffard RG (2013) microRNAs affect BCL-2 family proteins in the setting of cerebral ischemia. Neurochem Int (in press)

    Google Scholar 

  • Peng W, Gao T, Yang ZL, Zhang SC, Ren ML, Wang ZG, Zhang B (2012) Adipose-derived stem cells induced dendritic cells undergo tolerance and inhibit Th1 polarization. Cell Immunol 278:152–157

    CAS  PubMed  Google Scholar 

  • Qian DX, Zhang HT, Ma X, Jiang XD, Xu RX (2010) Comparison of the efficiencies of three neural induction protocols in human adipose stromal cells. Neurochem Res 35:572–579

    CAS  PubMed  Google Scholar 

  • Rabinovich SS, Seledtsov VI, Banul NV, Poveshchenko OV, Senyukov VV, Astrakov SV, Samarin DM, Taraban VY (2005) Cell therapy of brain stroke. Bull Exp Biol Med 139:126–128

    CAS  PubMed  Google Scholar 

  • Ramos-Cejudo J, Gutierrez-Fernandez M, Rodriguez-Frutos B, Exposito Alcaide M, Sanchez-Cabo F, Dopazo A, Diez-Tejedor E (2012) Spatial and temporal gene expression differences in core and periinfarct areas in experimental stroke: a microarray analysis. PLoS One 7:e52121

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rosado-de-Castro PH, Pimentel-Coelho PM, da Fonseca LM, de Freitas GR, Mendez-Otero R (2013) The rise of cell therapy trials for stroke: review of published and registered studies. Stem Cells Dev 22:2095–2111

    PubMed Central  PubMed  Google Scholar 

  • Russo V, Yu C, Belliveau P, Hamilton A, Flynn LE (2014) Comparison of human adipose-derived stem cells isolated from subcutaneous, omental, and intrathoracic adipose tissue depots for regenerative applications. Stem Cells Transl Med 3:206–217

    CAS  PubMed  Google Scholar 

  • Savitz SI, Dinsmore J, Wu J, Henderson GV, Stieg P, Caplan LR (2005) Neurotransplantation of fetal porcine cells in patients with basal ganglia infarcts: a preliminary safety and feasibility study. Cerebrovasc Dis 20:101–107

    PubMed  Google Scholar 

  • Schwarting S, Litwak S, Hao W, Bahr M, Weise J, Neumann H (2008) Hematopoietic stem cells reduce postischemic inflammation and ameliorate ischemic brain injury. Stroke 39:2867–2875

    CAS  PubMed  Google Scholar 

  • Seet RC, Rabinstein AA (2012) Symptomatic intracranial hemorrhage following intravenous thrombolysis for acute ischemic stroke: a critical review of case definitions. Cerebrovasc Dis 34:106–114

    PubMed  Google Scholar 

  • Shen CC, Yang YC, Chiao MT, Chan SC, Liu BS (2013) Low-level laser stimulation on adipose-tissue-derived stem cell treatments for focal cerebral ischemia in rats. Evid Based Complement Alternat Med 2013:594906

    PubMed Central  PubMed  Google Scholar 

  • Silva FJ, Holt DJ, Vargas V, Yockman J, Boudina S, Atkinson D, Grainger DW, Revelo MP, Sherman W, Bull DA, Patel AN (2014) Metabolically active human brown adipose tissue derived stem cells. Stem Cells 32:572–581

    CAS  PubMed  Google Scholar 

  • Skvortsova VI, Gubskiy LV, Tairova RT, Povarova OV, Cheglakov IB, Holodenko RV, Holodenko IV, Yarygin KN, Yarygin VN (2008) Use of bone marrow mesenchymal (stromal) stem cells in experimental ischemic stroke in rats. Bull Exp Biol Med 145:122–128

    CAS  PubMed  Google Scholar 

  • Smith WS, English JD, Johnston SC (2011) Chapter 370. Cerebrovascular diseases. In: Longo D, Fauci A, Kasper D, Hauser S, Jameson J, Loscalzo J (eds) Harrison’s principles of internal medicine, 18th edn. McGraw Hill, New York

    Google Scholar 

  • Suarez-Monteagudo C, Hernandez-Ramirez P, Alvarez-Gonzalez L, Garcia-Maeso I, de la Cuetara-Bernal K, Castillo-Diaz L, Bringas-Vega ML, Martinez-Aching G, Morales-Chacon LM, Baez-Martin MM, Sanchez-Catasus C, Carballo-Barreda M, Rodriguez-Rojas R, Gomez-Fernandez L, Alberti-Amador E, Macias-Abraham C, Balea ED, Rosales LC, Del Valle Perez L, Ferrer BB, Gonzalez RM, Bergado JA (2009) Autologous bone marrow stem cell neurotransplantation in stroke patients. an open study. Restor Neurol Neurosci 27:151–161

    PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    CAS  PubMed  Google Scholar 

  • Tsuji M, Taguchi A, Ohshima M, Kasahara Y, Sato Y, Tsuda H, Otani K, Yamahara K, Ihara M, Harada-Shiba M, Ikeda T, Matsuyama T (2014) Effects of intravenous administration of umbilical cord blood CD34 cells in a mouse model of neonatal stroke. Neuroscience 263C:148–158

    Google Scholar 

  • Ueno Y, Chopp M, Zhang L, Buller B, Liu Z, Lehman NL, Liu XS, Zhang Y, Roberts C, Zhang ZG (2012) Axonal outgrowth and dendritic plasticity in the cortical peri-infarct area after experimental stroke. Stroke 43:2221–2228

    PubMed Central  PubMed  Google Scholar 

  • Vasandan AB, Shankar SR, Prasad P, Sowmya Jahnavi V, Bhonde RR, Jyothi Prasanna S (2014) Functional differences in mesenchymal stromal cells from human dental pulp and periodontal ligament. J Cell Mol Med 18:344–354

    CAS  PubMed  Google Scholar 

  • Wang JH, Liu N, Du HW, Weng JS, Chen RH, Xiao YC, Zhang YX (2008) [Effects of adipose-derived stem cell transplantation on the angiogenesis and the expression of bFGF and VEGF in the brain post focal cerebral ischemia in rats]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 24:958–961

    CAS  PubMed  Google Scholar 

  • Wardlaw JM, Murray V, Berge E, Del Zoppo GJ (2009) Thrombolysis for acute ischaemic stroke. Cochrane Database Syst Rev 7:CD000213

    Google Scholar 

  • Wei X, Zhao L, Zhong J, Gu H, Feng D, Johnstone BH, March KL, Farlow MR, Du Y (2009) Adipose stromal cells-secreted neuroprotective media against neuronal apoptosis. Neurosci Lett 462:76–79

    CAS  PubMed  Google Scholar 

  • West CC, Murray IR, Gonzalez ZN, Hindle P, Hay DC, Stewart KJ, Peault B (2014) Ethical, legal and practical issues of establishing an adipose stem cell bank for research. J Plast Reconstr Aesthet Surg 67(6):745–751

    CAS  PubMed  Google Scholar 

  • Wu AY, Morrow DM (2012) Clinical use of dieletrophoresis separation for live adipose derived stem cells. J Transl Med 10:99

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu W, Niklason L, Steinbacher DM (2013) The effect of age on human adipose-derived stem cells. Plast Reconstr Surg 131:27–37

    CAS  PubMed  Google Scholar 

  • Yang KL, Lee JT, Pang CY, Lee TY, Chen SP, Liew HK, Chen SY, Chen TY, Lin PY (2012) Human adipose-derived stem cells for the treatment of intracerebral hemorrhage in rats via femoral intravenous injection. Cell Mol Biol Lett 17:376–392

    CAS  PubMed  Google Scholar 

  • Yang YC, Liu BS, Shen CC, Lin CH, Chiao MT, Cheng HC (2011) Transplantation of adipose tissue-derived stem cells for treatment of focal cerebral ischemia. Curr Neurovasc Res 8:1–13

    PubMed  Google Scholar 

  • Yang ZX, Han ZB, Ji YR, Wang YW, Liang L, Chi Y, Yang SG, Li LN, Luo WF, Li JP, Chen DD, Du WJ, Cao XC, Zhuo GS, Wang T, Han ZC (2013) CD106 identifies a subpopulation of mesenchymal stem cells with unique immunomodulatory properties. PLoS One 8:e59354

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ye J, Gimble JM (2011) Regulation of stem cell differentiation in adipose tissue by chronic inflammation. Clin Exp Pharmacol Physiol 38:872–878

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu JM, Bunnell BA, Kang SK (2011) Neural differentiation of human adipose tissue-derived stem cells. Methods Mol Biol 702:219–231

    CAS  PubMed  Google Scholar 

  • Zhu X, Du J, Liu G (2012) The comparison of multilineage differentiation of bone marrow and adipose-derived mesenchymal stem cells. Clin Lab 58:897–903

    CAS  PubMed  Google Scholar 

  • Zivin JA (2000) Cell transplant therapy for stroke: hope or hype. Neurology 55:467

    CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The author declares no conflict of interests. No part of the manuscript has been previously published in any language and all illustrations are original.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheuk-Kwan Sun M.D., Ph.D. .

Editor information

Editors and Affiliations

Conclusions

Conclusions

Taken into consideration the possibility of autologous transplantation without significant reduction in therapeutic potency with the donor’s age, the absence of serious ethical issues and concerns regarding disease transmission from allogeneic sources, the abundance, the relative ease of acquisition and culturing, the superior immunomodulatory function compared with stem cells from other sources, as well as the promising therapeutic efficacy in the treatment of stroke in the experimental settings, it is conceivable that ADSC will have an important role to play in the clinical setting of stroke treatment. Results from large-scaled, randomized, and well-controlled clinical trials are eagerly awaited to turn the possibility into reality.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sun, CK. (2015). Transplantation of Adipose-Derived Stem Cells in Stroke. In: Zhao, LR., Zhang, J. (eds) Cellular Therapy for Stroke and CNS Injuries. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-319-11481-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11481-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11480-4

  • Online ISBN: 978-3-319-11481-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics