Skip to main content

Planet OrbitLunar Orbit Resonances and the History of the Earth-Moon System

Some Special Perks for Earth by Having Jupiter and Venus in the Neighborhood

  • Chapter
  • First Online:
The Twin Sister Planets Venus and Earth
  • 962 Accesses

Abstract

After reviewing a number of geology and astronomy textbooks, a reader gets the feeling that the Moon is not all that important in the development of our habitable planet. The Moon raises ocean tides on the planet and it serves as a “night lantern” and these features of the Moon have been important for some human endeavors (e.g., in production of food crops in coastal areas and, in some special circumstances, in military campaigns at specific times in human history). But the question posed here is: HAS THE MOON BEEN IMPORTANT IN THE DEVELOPMENT OF PLANET EARTH INTO THE ONLY PLANET THAT WE KNOW OF THAT IS HABITABLE TODAY, AFTER NEARLY 4.6 BILLION YEARS OF GEOLOGICAL EVOLUTION?

“Another resonance of the above type is also stable. This keeps the perigee in step with jupiter’s orbital motion at a/a earth  = 53.4. However, variations in the Earth’s orbital eccentricity seem to make capture into this latter resonance unlikely (Yoder, private communication, 1977). Should capture have occurred, however, the effects on orbital history would be profound and significant heating of the Moon would occur if the eccentricity were driven to sufficiently large values.”

From Peale and Cassen (1978, p. 260).

“If we choose starting positions of Venus and the earth that correspond to an inferior conjunction of Venus with the sun as observed from the earth, eight years later there would be a similar conjunction at which the sun and Venus would occupy positions in the sky very close to their starting positions. Consequently, conjunctions of the type discussed in the previous section should recur at eight-year intervals. In the same way, other phenomena of Venus such as superior conjunctions, eastern elongations, and western elongations should exhibit eight year cycles.”

“After five conjunctions or eight years, they end up where they started.”

From Chapman (1986, pp. 340–341).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfven H (1969) Atom, man, and the Universe. The long chain of complications. W. H. Freeman, San Francisco, p 110

    Google Scholar 

  • Bailey CM, Peters SE, Morton J, Shotwell NL (2007) The Mechum river formation, Virginia Blue Ridge: a record of neoproterozoic and paleozoic tectonics in southeastern Laurentia. Am J Sci 307:1–22

    Article  Google Scholar 

  • Banks NL (1973) Tide-dominated offshore sedimentation, Lower Cambrian, north Norway. Sedimentology 20:213–228

    Article  Google Scholar 

  • Bazso A, Dvorak R, Pilat-Lohinger E, Eybl V, Lhotka Ch (2010) A survey of near-mean-motion resonances between Venus and Earth. Celest Mech Dyn Astr 107:63–76

    Article  Google Scholar 

  • Bostrom RC (2000) Tectonic consequences of Earth’s rotation. Oxford University Press, London, p 266

    Google Scholar 

  • Bekker A, Holland HD (2012) Oxygen overshoot and recovery during the early Paleoproterozoic. Earth Planet Sci Lett 317-318:295–304

    Google Scholar 

  • Canup RN (2013) Lunar conspiracies. Nature 504:27–29

    Google Scholar 

  • Chapman DMF (1986) Recurrent phenomena of Venus and the Venus/Earth orbital resonance. J R Astron Soc Canada 80:336–343

    Google Scholar 

  • Condie KC, Pease V (2008) When did plate tectonics begin on planet Earth? Geological Society of America Special Paper 440, pp 294

    Google Scholar 

  • Conway-Morris S (1990) Late Precambrian-Early Cambrian metazoan diversification. In: Briggs DEG, Crowther PR (eds) Paleobiology: a synthesis. Oxford Press, Oxford, pp 30–36

    Google Scholar 

  • Cuk M (2007) Excitation of lunar eccentricity by planetary resonances. Science 318:244

    Article  Google Scholar 

  • Cuk M, Stewart ST (2012) Making the Moon from a fast-spinning Earth: A giant impact followed by resonant despinning. Science 338:1047–1052

    Google Scholar 

  • Davies GF (1992) On the emergence of plate tectonics. Geology 20:963–966

    Article  Google Scholar 

  • Deynoux M, Duringer P, Khatib R, Villeneuve M (1993) Laterally and vertically accreted tidal deposits in the Upper Proterozoic Madina-Kauto Basin, southeastern Senegal, West Africa. Sedimen Geol 84:179–188

    Article  Google Scholar 

  • Driese SG (1987) An analysis of large-scale ebb-dominated tidal bedforms: evidence for tidal bundles in the Lower Silurian Clinch Sandstone of east Tennessee. Southeast Geol 27:121–140

    Google Scholar 

  • Driese SG, Byers CW, Dott RH Jr (1981) Tidal deposition in the basal Upper Cambrian Mt. Simon Formation in Wisconsin. J Sediment Petrol 51:367–381

    Google Scholar 

  • Ehlers TA, Chan MA (1999) Tidal sedimentology and estuarine deposition of the Proterozoic Big Cottonwood Formation, Utah. J Sediment Res 69:1169–1180

    Article  Google Scholar 

  • Eyles N, Januszczak N (2004) ‘Zipper-rift’: a tectonic model for neoproterozoic glaciations during the breakup of Rodinia after 750 Ma. Earth Sci Rev 65:1–73

    Article  Google Scholar 

  • Eyles N, Young GM (1994) Geodynamic controls on glaciation in Earth history. In: Deynoux M, Miller JMG, Domack EW, Eyles N, Fairchild IJ, Young GM (eds) Earth’s glacial record. Cambridge University Press, Cambridge, pp 1–28

    Chapter  Google Scholar 

  • Gould SJ (1994) The evolution of life on the Earth. Sci Am 271(4):85–91

    Article  Google Scholar 

  • Grinspoon DH (1997) Venus revealed: a new look below the clouds of our mysterious twin planet. Addison-Wesley, Reading, p 355

    Google Scholar 

  • Halverson GP, Shields-Zhou G (2011) Chemostratigraphy and the neoproterozoic glaciations. In: Arnaud E, Halverson GP, Shields-Zhou G (eds) The geological record of neoproterozoic glaciations, vol 36. The Geological Society of London, Memoir, London, pp 51–66

    Google Scholar 

  • Hansen KS (1982) Secular effects of oceanic tidal dissipation on the moon’s orbit and earth’s rotation. Rev Geophys Space Phys 20:457–480

    Article  Google Scholar 

  • Hiscott RN (1982) Tidal deposits of the Lower Cambrian Random Formation, eastern Newfoundland: facies and paleoenvironments. Canadian J Earth Sci 19:2028–2042

    Article  Google Scholar 

  • Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A neoproterozoic s curves from marin nowball earth. Science 281:1342–1346

    Article  Google Scholar 

  • Holland CH (ed) (1971) Cambrian of the new world. Wiley, New York, p 456

    Google Scholar 

  • Holland CH (ed) (1974) Cambrian of the British Isles, Norden, and Spitsbergen. Wiley, New York, p 300

    Google Scholar 

  • Holland HD (2002) Volcanic gases, black smokers, and the great oxidation event. Geochim Cosmochim Acta 66:3811–3826

    Article  Google Scholar 

  • Holland HD (2009) Why the atmosphere became oxygenated: a proposal. Geochim Cosmochim Acta 73:5241–5255

    Article  Google Scholar 

  • Imbrie J, Imbrie KP (1979) Ice ages; solving the mystery. Enslow Publishers, Short Hills (NJ) pp 224

    Google Scholar 

  • Jordan TH (1974) Some comments on tidal drag as a mechanism for driving plate motion. J Geophy Res 79:2141–2142

    Article  Google Scholar 

  • Kasting J (2010) How to find a habitable planet. Princeton University Press, New Jersey, p 326

    Google Scholar 

  • Kessler LG, Gallop IG (1988) Inner shelf/shoreface intertidal transition, upper Precambrian, Port Askaig Tillite, Isle of Islay, Argyll. In: de Boer PL, van Gelder A, Nio SD (eds) Tide-influenced sedimentary environments and facies. D. Reidell, Dordrecht, pp 341–358

    Chapter  Google Scholar 

  • Knoll AD (1991) End of the Proterozoic eon. Sci Am 265(4):64–73

    Article  Google Scholar 

  • Laskar J (1994) Large-scale chaos in the solar system. Astron Astrophys 287:L9–L12

    Google Scholar 

  • Laskar J (1995) Large scale chaos and marginal stability in the solar system. In: Proceedings Volume, XIth International Congress of Mathematical Physics, pp 75–120

    Google Scholar 

  • Laskar J (1996) Large scale chaos and marginal stability in the solar system. Celest Mech Dyn Astron 64:115–162

    Article  Google Scholar 

  • Link PK, Miller JMG, Christie-Blick N (1994) Glacial-marine facies in a continental rift environment: neoproterozoic rocks of the western United States Cordillera. In: Deynoux M, Miller JMG, Domack EW, Eyles N, Fairchild IJ, Young GM (eds) Earth’s glacial record. University of Cambridge Press, Cambridge, pp 29–46

    Chapter  Google Scholar 

  • Lochman-Balk C (1970) Upper Cambrian faunal patterns on the craton. Geol Soc Am Bull 81:3197–3224

    Article  Google Scholar 

  • Lochman-Balk C (1971) The Cambrian of the craton of the United States. In: Holland CH (ed) Cambrian of the new world. Wiley, New York pp 79–167

    Google Scholar 

  • Macdonald JGF (1963) The internal constitutions of the inner planets and the Moon. Sp Sci Rev 2:473–557

    Google Scholar 

  • Miller JMG (1994) The neoproterozoic Konnarock formation, southwestern Virginia, USA: glaciolacustrine facies in a continental rift. In: Deynoux M, Miller JMG, Domack EW, Eyles N, Fairchild IJ, Young GM (eds) Earth’s glacial record. University of Cambridge Press, Cambridge, pp 47–59

    Chapter  Google Scholar 

  • Miller DJ, Eriksson KA (1997) Late Mississippian prodeltaic rhythmites in the Appalachian Basin: a hierarchical record of tidal and climatic periodicities. J Sedi Res 67:653–660

    Google Scholar 

  • Nelson TH, Temple PG (1972) Mainstream mantle convection: a geologic analysis of plate motion. Am Assoc Petrol Geol Bull 56:226–246

    Google Scholar 

  • Palmer AR (1971) The cambrian of the appalachian and eastern New England regions, eastern United States. In: Holland CH (ed) Cambrian of the new world. Wiley, New York, pp 169–217

    Google Scholar 

  • Peale SJ, Cassen P (1978) Contribution of tidal dissipation to lunar thermal history. Icarus 36:245–269

    Article  Google Scholar 

  • Powell CM, Preiss WV, Gatehouse CG, Krapaz B, Li ZX (1994) South Australian record of a Rodinian epicontinental basin and its mid-neoproterozoic breakup (~ 700 Ma) to form the Palaeo-Pacific ocean. Tectonophysics 237:113–140

    Article  Google Scholar 

  • Priess WV (ed) (1987) The adelaide geosyncline-late proterozoic stratigraphy: sedimentatikon, palaeontology and tectonics. Geol Surv S Aust Bull 53:438

    Google Scholar 

  • Rankin DW (1975) The continental margin of eastern North America in the southern Appalachians: the opening and closing of the Proto-Atlantic ocean. Am J Sci 275-A:298–336

    Google Scholar 

  • Rankin DW (1993) The volcanogenic Mount Rogers formation and the overlying glaciogenic Konnarock formation—two late proterozoic units in southwestern Virginia. U. S. Geol Surv Bull 2029:26

    Google Scholar 

  • Reinhard CT, Ralswell R, Scott C, Anbar AD, Lyons TW (2009) A late archean sulfidic sea simulated by early oxidative weathering of the continents. Science 326:713–716

    Article  Google Scholar 

  • Ricard Y, Doglioni C, Sabadina R (1991) Differential rotation between lithosphere and mantle: a consequence of lateral mantle viscosity variations. J Geophys Res 96:8407–8415

    Article  Google Scholar 

  • Ross MN, Schubert G (1989) Evolution of the lunar orbit with temperature and frequency-dependent dissipation. J Geophys Res 94(B7):9533–9544

    Article  Google Scholar 

  • Saeed A, Evans JE (1999) Subsurface facies analysis of the late cambrian Mt. Simon Sandstone in western Ohio (midcontinent North America). Open J Geol 2:35–47

    Article  Google Scholar 

  • Saunders RS (1999) Venus. In: Beatty JK, Petersen CC, Chaikin A (eds) The new solar system, 4th edn. Sky Publishing Company and Cambridge University Press, Cambridge, pp 97–110

    Google Scholar 

  • Schultz PH, Spudis PD (1983) Beginning and end of lunar mare volcanism. Nature 302:233–236

    Article  Google Scholar 

  • Scoppola B, Boccaletti D, Bevis M, Carminati E, Doglioni C (2006) The westward drift of the lithosphere: a rotational drag? Geol Soc Am Bull 118:199–209

    Article  Google Scholar 

  • Shields-Zhou G, Och L (2011) The case for a neoproterozoic oxygenation event: geochemical evidence and biological consequences. GSA Today 21(3):4–11

    Article  Google Scholar 

  • Sonett CP, Chan MA (1998) Meoproterozoic Earth-Moon dynamics: rework of the 900 Ma big Cottonwood Canyon tidal laminae. Geophys Res Lett 25:539–542

    Article  Google Scholar 

  • Sonett CP, Kvale EP, Zakharian A, Chan MA, Demko TM (1996) Late proterozoic and paleozoic tides, retreat of the moon, and rotation of the earth. Science 273:100–104

    Article  Google Scholar 

  • Stern RJ (2005) Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in neoproterozoic time. Geology 33:557–560

    Article  Google Scholar 

  • Stewart JH (1970) Upper precambrian and lower Cambrian strata in the Southern Great Basin, California and Nevada. United States Geological Survey Professional Paper 620, p 206

    Google Scholar 

  • Tape CH, Cowan CA, Runkel AC (2003) Tidal-bundle sequences in the jordan sandstone (Upper Cambrian), southeastern Minnesota, U. S. A.: evidence for tides along inboard shorelines of the Sauk epicontinental sea. J Sediment Res 73:354–366

    Article  Google Scholar 

  • Touma J, Wisdon J (1994) Evolution of the Earth-Moon system. Astron Jour 108:1943–1961

    Google Scholar 

  • Touma J, Wisdom J (1998) Resonances in the early evolution of the Earth-Moon system. Astron Jour 115:1653–1663

    Google Scholar 

  • Uyeda S, Kanamori H (1979) Back-arc opening and the mode of subduction. J Geophys Res 84:1049–1061

    Article  Google Scholar 

  • Webb DH (1982) Tides and the evolution of the Earth-Moon system. Geophys J R Astron Soc 70:261–271

    Article  Google Scholar 

  • Whitmeyer SJ, Karlstrom KE (2007) Tectonic model for the proterozoic growth of North America. Geosphere 3:220–259. doi:10-1130/GES00055.1

    Article  Google Scholar 

  • Williams GE (1989a) Tidal rhythmites: geochronometers for the ancient Earth-Moon system. Episodes 12(3):162–171

    Google Scholar 

  • Williams GE (1989b) Precambrian tidal sedimentary cycles and earth’s palorotation. EOS (Am Geophys Union) 70(33):40–41

    Google Scholar 

  • Williams GE (1997) Precambrian length of day and the validity of tidal rhythmite paleotidal values. Geophys Res Lett 24:421–424

    Article  Google Scholar 

  • Windley BR (1995) The evolving continents, 3rd edn. Wiley, New York, p 526

    Google Scholar 

  • Young GM, Nesbitt HW (1985) The Gowganda formation in the sourhern part of the Huronian outcrop bets, Ontario, Canada: statigraphy, depositional environments and the regional tectonic significance. Precambrian Res 29:265–301

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Malcuit .

Appendix

Appendix

Fig. 8.40
figure 40

Summary diagrams for some orbit and tidal parameters for the Cool Early Earth era and for Early Archean time (4.6–3.6 Ga). a Set 1 parameters. b Set 2 parameters

Fig. 8.41
figure 41

Composite diagram for some orbit and tidal parameters for the Cool Early Earth era and for Early Archean time (4.6–3.6 Ga)

Fig. 8.42
figure 42

Summary diagrams for some orbit and tidal parameters for part of the Archean Eon (3.6–2.6 Ga). a Set 1 parameters. b Set 2 parameters

Fig. 8.43
figure 43

Composite diagram for some orbit and tidal parameters for part of the Archean Eon (3.6–2.6 Ga)

Fig. 8.44
figure 44

Summary diagrams for some orbit and tidal parameters for the Early Proterozoic to Late Proterozoic eras (2.6–1.1 Ga). a Set 1 parameters. b Set 2 parameters

Fig. 8.45
figure 45

Composite diagram for some orbit and tidal parameters for the Early Proterozoic to Late Proterozoic eras (2.6–1.1 Ga)

Fig. 8.46
figure 46

Summary diagrams for some orbit and tidal parameters for the Late Proterozoic and Early Paleozoic eras (1.1 Ga to Present). a Set 1 parameters. b Set 2 parameters

Fig. 8.47
figure 47

Composite summary diagram for some orbit and tidal parameters for the Late Proterozoic and Early Paleozoic eras (1.1 Ga to Present)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Malcuit, R. (2015). Planet OrbitLunar Orbit Resonances and the History of the Earth-Moon System. In: The Twin Sister Planets Venus and Earth. Springer, Cham. https://doi.org/10.1007/978-3-319-11388-3_8

Download citation

Publish with us

Policies and ethics