Skip to main content

Abstract

To realize industrial use of excellent characteristics of single-crystal diamond, we have developed techniques to fabricate the wafers with inch-size area. Artificial growth of the bulk crystals and a lift-off process to synthesize the freestanding wafers from the seed wafers can be successfully conducted. In this paper, motive forces of our research as well as presented status of related techniques are briefly summarized, as well as our recent progresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. IPCC, 2011: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, prepared by Working Group III of the Intergovernmental Panel on Climate Change, O Edenhofer, R Pichs-Madruga, Y Sokona, K Seyboth, P Matschoss, S Kadner, T Zwickel, P Eickemeier, G Hansen, S Schlömer, C von Stechow (eds), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1075 pp

    Google Scholar 

  2. Technology of Semiconductor SiC and Its Application, ed. H Matsunami (Nikkan Kogyo Shinbun, Tokyo, 2003) [in Japanese] Chap. 8.

    Google Scholar 

  3. S Koizumi, C Nebel, and M Nesladek: Physics and Applications of CVD Diamond (Wiley-VCH, Weinheim, 2008) Chap. 3

    Google Scholar 

  4. H Umezawa, Y Mokuno, H Yamada, A Chayahara, and S Shikata (2010) Diamond Relat Mater 19: 208-212

    Google Scholar 

  5. T Funaki, K Kodama, H Umezawa and S Shikata (2011) Materials Science Forum 679-680: 820-823

    Google Scholar 

  6. T Yamada, P R Vinod, D H Hwang, H Yoshikawa, S Shikata and N Fujimori (2005) Diamond Relat Mater 14: 2047-2050

    Google Scholar 

  7. S Shikata, A Chayahara, H Yamada, and H Umezawa (2012) presented at NDNC2012, May 21, USA

    Google Scholar 

  8. Sumitomo Electric Industries Ltd. http://www.sumitomoelectricusa.com/products/heatsinks/sumicrystal.html. Accessed 12 July 2012

  9. Element Six. http://www.e6cvd.com/cvd/page.jsp?pageid=100&lang=en. Accessed 12 July 2012

  10. EDP Corp. http://www.d-edp.jp/index_en.html. Accessed 12 July 2012

  11. US Geological Survey. http://www.usgs.gov/. Accessed 12 July 2012

  12. H Sumiya and S Satoh (1996) Diamond Relat Mater 5: 1359-1365

    Google Scholar 

  13. Y Hirose, S Amanuma, K Komaki (1990) J Appl Phys 68: 6401-6405

    Google Scholar 

  14. sp3 diamond technologies Inc. http://sp3diamondtech.com/index.asp . Accessed 12 July 2012

  15. K-W Chaeb, Y-J Baika, J-K Parka, W-S Le (2010) Diamond and Related Materials 19: 1168–1171

    Google Scholar 

  16. M Kamo, Y Sato, S Matsumoto, and N Setaka (1983) J Cryst Growth 62: 642-644.

    Google Scholar 

  17. E Sevillano and B Williams (1998) Diamond Films Technol 8: 73-91

    Google Scholar 

  18. C Wild, P Koidl, W Müller-Sebert, H Walcher, R Kohl, N Herres, R Locher, R Samlenski, and R Brenn (1993) Diamond Relat Mater 2: 158-168

    Google Scholar 

  19. Y Mokuno, A Chayahara, H Yamada, and N Tsubouchi (2009) Diamond Relat Mater 18: 1258-1261.

    Google Scholar 

  20. A Gicquel, F Silva, K Hassouni (2000) J Electrochem Soc 147: 2218-2226

    Google Scholar 

  21. H Yamada, A Chahahara, Y Mokuno, H Umezawa, S Shikata, and N Fujimori (2010) Appl Phys Express 3: 051301 (3 pages)

    Google Scholar 

  22. H Yamada, A Chahahara, and Y Mokuno (2007) J Appl Phys 101: 063302 (6 pages).

    Google Scholar 

  23. M W Geis, H I Smith, A Argoitia, J.Angus, G-H M Ma, J T Glass, J Butler, C J Robinson, and R Pryor (1991) Appl. Phys. Lett. 58: 2485-2487.

    Google Scholar 

  24. K Meguro, Y Nishibayashi, and T Imai (2003) SEI Technical Review 163: 53-59 [in Japanese]

    Google Scholar 

  25. H Yamada, A Chayahara, Y Mokuno, N Tsubouchi, S Shikata, N Fujimori (2011) Diamond and Related Materials 20: 616-619

    Google Scholar 

  26. H Yamada, A Chayahara, H Umezawa, N Tsubouchi, Y Mokuno and S Shikata (2012) Diamond Relat Mater 24: 29-33

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yamada, H., Chayahara, A., Mokuno, Y., Tsubouchi, N., Shikata, Si. (2014). Recent progresses in R&D of methods to fabricate inch-sized diamond wafers. In: Udomkichdecha, W., Böllinghaus, T., Manonukul, A., Lexow, J. (eds) Materials Challenges and Testing for Manufacturing, Mobility, Biomedical Applications and Climate. Springer, Cham. https://doi.org/10.1007/978-3-319-11340-1_10

Download citation

Publish with us

Policies and ethics