Skip to main content

Conjugate Gradient in Noisy Photometric Stereo

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8671))

Abstract

This paper discusses the problem of reconstructing the Lambertian surface from noisy three-light source Photometric Stereo. In the continuous image setting the shape recovery process is divided into two steps: an algebraic one (gradient computation) and analytical one (gradient integration). The digitized case with added noise has it discrete analogue in which also perturbed gradient from three noisy images is first computed. Generically such non-integrable vector field is subsequently rectified to the ”closest” integrable one. Finally, numerical integration scheme yields the unknown surface. The process of vector field rectification is reduced to the corresponding linear optimization task of very high dimension (comparable with the image resolution). Standard methods based on matrix pseudo-inversion suffer from heavy computation due to the necessity of large matrix inversion. A possible alternative is to set up an iterative scheme based on local snapshots’ optimizations (e.g. 2D-Leap-Frog). Another approach which is proposed in this paper is solving the above global optimization scheme by Conjugate Gradient with no inversion of matrices of large dimension. The experimental results from this paper show that the application of Conjugate Gradient forms a computationally feasible alternative in denoising Photometric Stereo.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brooks, M.J., Chojnacki, W., Kozera, R.: Impossible and ambiguous shading patterns. Int. J. Comp. Vision 7(2), 119–126 (1992)

    Article  Google Scholar 

  2. Castelán, M., Hancock, E.R.: Imposing integrability in geometric shape-from-shading. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP 2003. LNCS, vol. 2905, pp. 196–203. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. (2013)

    Google Scholar 

  4. Frankot, R.T., Chellappa, R.: A method of enforcing integrability in shape from shading algorithms. IEEE Trans. Patt. Rec. Machine Intell. 10(4), 439–451 (1988)

    Article  MATH  Google Scholar 

  5. Horn, B.K.P.: Robot Vision. McGraw-Hill, New York (1986)

    Google Scholar 

  6. Horn, B.K.P., Brooks, M.J.: Shape from Shading. MIT Press, Cambridge

    Google Scholar 

  7. Kozera, R.: Existence and uniqueness in Photometric Stereo. Appl. Math. Comput. 44(1), 1–104 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kozera, R.: On shape recovery from two shading patterns. Int. J. Patt. Rec. Art. Intel. 6(4), 673–698 (1992)

    Article  Google Scholar 

  9. Kozera, R.: On complete integrals and uniqueness in shape from shading. Appl. Math. Comput. 73(1), 1–37 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kozera, R.: Uniqueness in shape from shading revisited. J. Math. Imag. Vision 7, 123–138 (1997)

    Article  MathSciNet  Google Scholar 

  11. Noakes, L., Kozera, R.: The 2-D leap-frog: Integrability, noise, and digitization. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 352–364. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Noakes, L., Kozera, R.: Denoising images: Non-linear leap-frog for shape and light-source recovery. In: Asano, T., Klette, R., Ronse, C. (eds.) Geometry, Morphology, and Computational Imaging. LNCS, vol. 2616, pp. 419–436. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Noakes, L., Kozera, R.: Nonlinearities and noise reduction in 3-source Photometric Stereo. J. Math. Imag. Vision 18(3), 119–127 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Oliensis, J.: Uniqueness in shape from shading. Int. J. Comp. Vision 6(2), 75–104 (1991)

    Article  Google Scholar 

  15. Onn, R., Bruckstein, A.: Uniqueness in shape from shading. Int. J. Comp. Vision 5(1), 105–113 (1990)

    Article  Google Scholar 

  16. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM (2003)

    Google Scholar 

  17. Simchony, T., Chellappa, R., Shao, M.: Direct analytical methods for solving Poisson equations in computer vision problems. IEEE Trans. Patt. Rec. Machine Intell. 12(5), 435–446 (1990)

    Article  Google Scholar 

  18. van der Vorst, H.A.: Iterative Krylov Methods for Large Linear Systems. Cambridge Monographs on Applied and Computational Mathematics (2009)

    Google Scholar 

  19. Wei, T., Klette, R.: On depth recovery from gradient vector field. In: Bhattacharaya, B.B., Sur-Kolay, S., Nandy, S.C., Bagch, A. (eds.) Algorithms. in Architectures and Information Systems Security, pp. 765–797 (2009)

    Google Scholar 

  20. Wöhler, C.: 3D Computer Vision: Efficient Methods and Applications. Springer, Heidelberg (2009)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kozera, R., Okulicka-Dłużewska, F. (2014). Conjugate Gradient in Noisy Photometric Stereo. In: Chmielewski, L.J., Kozera, R., Shin, BS., Wojciechowski, K. (eds) Computer Vision and Graphics. ICCVG 2014. Lecture Notes in Computer Science, vol 8671. Springer, Cham. https://doi.org/10.1007/978-3-319-11331-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11331-9_41

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11330-2

  • Online ISBN: 978-3-319-11331-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics