Skip to main content

Autologous Bioengineered Heart Valves: An Update

  • Chapter
  • First Online:
Biomaterials for Cardiac Regeneration

Abstract

Current valve replacement options are limited in their capacity to grow, self-repair, and remodel. Therefore, no ideal valve replacement option exists for the pediatric or young adult population. Researchers have thus turned to tissue engineering, especially with the use of autologous cell sources in order to avoid issues of immunogenicity. The current paradigm uses a scaffold seeded with autologous cells, sometimes expanded and stressed in vitro, prior to implantation. Each step of this process is reviewed here. Biodegradable polymer scaffolds are an attractive option because they can be readily manufactured and provide an off-the-shelf product. However, cell attachment, in vivo degradation performance, and biomechanics are just some of the hurdles to overcome. An alternative to synthetic polymer scaffolds is to decellularize a natural valve which already has the desired structure and functionality. Decellularization reduces immunogenicity and rejection and can be applied to both allografts (human cadaveric) and xenografts (typically porcine). Various decellularization protocols have been tried with successes and failures. Cells that have been then seeded onto the scaffolds include vascular endothelial cells, myofibroblasts, circulating endothelial progenitor cells, and bone-marrow derived stem cells. Bioreactors are becoming increasingly complex with dynamic conditions exerting multiple shear forces on the cells. Meanwhile there is also a movement towards simpler, more practical, hospital-friendly bioreactors. A small series of clinical applications have already been published. Alternative delivery routes, including via transcatheter delivery systems are currently under investigation. Each step in the process of producing autologous bioengineered heart valves has seen growth in the last two decades and gradually researchers are working towards a viable tissue engineered alternative to current prosthetic valves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asahara T, Kawamoto A, Masuda H (2011) Concise review: circulating endothelial progenitor cells for vascular medicine. Stem Cells 29:1650–1655

    Article  Google Scholar 

  • Asahara T, Murohara T, Sullivan A, Silver M, Van Der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  Google Scholar 

  • Bader A, Schilling T, Teebken OE, Brandes G, Herden T, Steinhoff G, Haverich A (1998) Tissue engineering of heart valves–human endothelial cell seeding of detergent acellularized porcine valves. Eur J Cardiothorac Surg 14:279–284

    Article  Google Scholar 

  • Bloch O, Golde P, Dohmen PM, Posner S, Konertz W, Erdbrugger W (2011) Immune response in patients receiving a bioprosthetic heart valve: lack of response with decellularized valves. Tissue Eng Part A 17:2399–2405

    Article  Google Scholar 

  • Breuer CK, Mettler BA, Anthony T, Sales VL, Schoen FJ, Mayer JE (2004) Application of tissue-engineering principles toward the development of a semilunar heart valve substitute. Tissue Eng 10:1725–1736

    Article  Google Scholar 

  • Brody S, Pandit A (2007) Approaches to heart valve tissue engineering scaffold design. J Biomed Mater Res B Appl Biomater 83:16–43

    Article  Google Scholar 

  • Cebotari S, Lichtenberg A, Tudorache I, Hilfiker A, Mertsching H, Leyh R, Breymann T, Kallenbach K, Maniuc L, Batrinac A, Repin O, Maliga O, Ciubotaru A, Haverich A (2006) Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation 114:I132–I137

    Article  Google Scholar 

  • Cebotari S, Tudorache I, Ciubotaru A, Boethig D, Sarikouch S, Goerler A, Lichtenberg A, Cheptanaru E, Barnaciuc S, Cazacu A, Maliga O, Repin O, Maniuc L, Breymann T, Haverich A (2011) Use of fresh decellularized allografts for pulmonary valve replacement may reduce the reoperation rate in children and young adults: early report. Circulation 124:S115–S123

    Article  Google Scholar 

  • Charitos EI, Takkenberg JJ, Hanke T, Gorski A, Botha C, Franke U, Dodge-Khatami A, Hoerer J, Lange R, Moritz A, Ferrari-Kuehne K, Hetzer R, Huebler M, Bogers AJ, Stierle U, Sievers HH, Hemmer W (2012) Reoperations on the pulmonary autograft and pulmonary homograft after the ross procedure: an update on the German Dutch ross registry. J Thorac Cardiovasc Surg 144:813–821, Discussion 821–3

    Article  Google Scholar 

  • Converse GL, Buse EE, Hopkins RA (2013) Bioreactors and operating room centric protocols for clinical heart valve tissue engineering. Prog Pediatr Cardiol 35:95–100

    Article  Google Scholar 

  • Da Costa FD, Dohmen PM, Duarte D, Von Glenn C, Lopes SV, Filho HH, Da Costa MB, Konertz W (2005) Immunological and echocardiographic evaluation of decellularized versus cryopreserved allografts during the Ross operation. Eur J Cardiothorac Surg 27:572–578

    Article  Google Scholar 

  • Dohmen PM, Lembcke A, Holinski S, Pruss A, Konertz W (2011) Ten years of clinical results with a tissue-engineered pulmonary valve. Ann Thorac Surg 92:1308–1314

    Article  Google Scholar 

  • Dohmen PM, Lembcke A, Hotz H, Kivelitz D, Konertz WF (2002) Ross operation with a tissue-engineered heart valve. Ann Thorac Surg 74:1438–1442

    Article  Google Scholar 

  • Driessen-Mol A, Emmert MY, Dijkman PE, Frese L, Sanders B, Weber B, Cesarovic N, Sidler M, Leenders J, Jenni R, Grunenfelder J, Falk V, Baaijens FP, Hoerstrup SP (2014) Transcatheter implantation of homologous “off-the-shelf” tissue-engineered heart valves with self-repair capacity: long-term functionality and rapid in vivo remodeling in sheep. J Am Coll Cardiol 63:1320–1329

    Article  Google Scholar 

  • Engelmayr GC Jr, Sales VL, Mayer JE Jr, Sacks MS (2006) Cyclic flexure and laminar flow synergistically accelerate mesenchymal stem cell-mediated engineered tissue formation: implications for engineered heart valve tissues. Biomaterials 27:6083–6095

    Article  Google Scholar 

  • Erdbrugger W, Konertz W, Dohmen PM, Posner S, Ellerbrok H, Brodde OE, Robenek H, Modersohn D, Pruss A, Holinski S, Stein-Konertz M, Pauli G (2006) Decellularized xenogenic heart valves reveal remodeling and growth potential in vivo. Tissue Eng 12:2059–2068

    Article  Google Scholar 

  • Hibino N, Mcgillicuddy E, Matsumura G, Ichihara Y, Naito Y, Breuer C, Shinoka T (2010) Late-term results of tissue-engineered vascular grafts in humans. J Thorac Cardiovasc Surg 139:431–436, 436 E1-2

    Article  Google Scholar 

  • Hinderer S, Seifert J, Votteler M, Shen N, Rheinlaender J, Schaffer TE, Schenke-Layland K (2014) Engineering of a bio-functionalized hybrid off-the-shelf heart valve. Biomaterials 35: 2130–2139

    Article  Google Scholar 

  • Hinton RB, Yutzey KE (2011) Heart valve structure and function in development and disease. Annu Rev Physiol 73:29–46

    Article  Google Scholar 

  • Hoerstrup SP, Sodian R, Daebritz S, Wang J, Bacha EA, Martin DP, Moran AM, Guleserian KJ, Sperling JS, Kaushal S, Vacanti JP, Schoen FJ, Mayer JE Jr (2000) Functional living trileaflet heart valves grown in vitro. Circulation 102:Iii44–Iii49

    Article  Google Scholar 

  • Hoffman-Kim D, Maish MS, Krueger PM, Lukoff H, Bert A, Hong T, Hopkins RA (2005) Comparison of three myofibroblast cell sources for the tissue engineering of cardiac valves. Tissue Eng 11:288–301

    Article  Google Scholar 

  • Juthier F, Vincentelli A, Pincon C, Banfi C, Ennezat PV, Marechaux S, Prat A (2012) Reoperation after the Ross procedure: incidence, management, and survival. Ann Thorac Surg 93:598–604, Discussion 605

    Article  Google Scholar 

  • Kasimir MT, Rieder E, Seebacher G, Nigisch A, Dekan B, Wolner E, Weigel G, Simon P (2006) Decellularization does not eliminate thrombogenicity and inflammatory stimulation in tissue-engineered porcine heart valves. J Heart Valve Dis 15:278–286, Discussion 286

    Google Scholar 

  • Le Huu A, Shum-Tim D (2014) Tissue engineering of autologous heart valves: a focused update. Future Cardiol 10:93–104

    Article  Google Scholar 

  • Leon MB, Smith CR, Mack M, Miller DC, Moses JW, Svensson LG, Tuzcu EM, Webb JG, Fontana GP, Makkar RR, Brown DL, Block PC, Guyton RA, Pichard AD, Bavaria JE, Herrmann HC, Douglas PS, Petersen JL, Akin JJ, Anderson WN, Wang D, Pocock S, Investigators PT (2010) Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med 363:1597–1607

    Article  Google Scholar 

  • Liu AC, Joag VR, Gotlieb AI (2007) The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology. Am J Pathol 171:1407–1418

    Article  Google Scholar 

  • Masoumi N, Jean A, Zugates JT, Johnson KL, Engelmayr GC Jr (2013a) Laser microfabricated poly(glycerol sebacate) scaffolds for heart valve tissue engineering. J Biomed Mater Res A 101:104–114

    Article  Google Scholar 

  • Masoumi N, Johnson KL, Howell MC, Engelmayr GC Jr (2013b) Valvular interstitial cell seeded poly(glycerol sebacate) scaffolds: toward a biomimetic in vitro model for heart valve tissue engineering. Acta Biomater 9:5974–5988

    Article  Google Scholar 

  • Numata S, Fujisato T, Niwaya K, Ishibashi-Ueda H, Nakatani T, Kitamura S (2004) Immunological and histological evaluation of decellularized allograft in a pig model: comparison with cryopreserved allograft. J Heart Valve Dis 13:984–990

    Google Scholar 

  • Ota T, Taketani S, Iwai S, Miyagawa S, Furuta M, Hara M, Uchimura E, Okita Y, Sawa Y (2007) Novel method of decellularization of porcine valves using polyethylene glycol and gamma irradiation. Ann Thorac Surg 83:1501–1507

    Article  Google Scholar 

  • Park H, Larson BL, Guillemette MD, Jain SR, Hua C, Engelmayr GC Jr, Freed LE (2011) The significance of pore microarchitecture in a multi-layered elastomeric scaffold for contractile cardiac muscle constructs. Biomaterials 32:1856–1864

    Article  Google Scholar 

  • Perri G, Polito A, Esposito C, Albanese SB, Francalanci P, Pongiglione G, Carotti A (2012) Early and late failure of tissue-engineered pulmonary valve conduits used for right ventricular outflow tract reconstruction in patients with congenital heart disease. Eur J Cardiothorac Surg 41:1320–1325

    Article  Google Scholar 

  • Rieder E, Kasimir MT, Silberhumer G, Seebacher G, Wolner E, Simon P, Weigel G (2004) Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J Thorac Cardiovasc Surg 127:399–405

    Article  Google Scholar 

  • Sales VL, Mettler BA, Engelmayr GC Jr, Aikawa E, Bischoff J, Martin DP, Exarhopoulos A, Moses MA, Schoen FJ, Sacks MS, Mayer JE Jr (2010) Endothelial progenitor cells as a sole source for ex vivo seeding of tissue-engineered heart valves. Tissue Eng Part A 16:257–267

    Article  Google Scholar 

  • Schenke-Layland K, Opitz F, Gross M, Doring C, Halbhuber KJ, Schirrmeister F, Wahlers T, Stock UA (2003) Complete dynamic repopulation of decellularized heart valves by application of defined physical signals-an in vitro study. Cardiovasc Res 60:497–509

    Article  Google Scholar 

  • Schmidt D, Dijkman PE, Driessen-Mol A, Stenger R, Mariani C, Puolakka A, Rissanen M, Deichmann T, Odermatt B, Weber B, Emmert MY, Zund G, Baaijens FP, Hoerstrup SP (2010) Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells. J Am Coll Cardiol 56:510–520

    Article  Google Scholar 

  • Shin’oka T, Matsumura G, Hibino N, Naito Y, Watanabe M, Konuma T, Sakamoto T, Nagatsu M, Kurosawa H (2005) Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg 129:1330–1338

    Article  Google Scholar 

  • Shinoka T (2002) Tissue engineered heart valves: autologous cell seeding on biodegradable polymer scaffold. Artif Organs 26:402–406

    Article  Google Scholar 

  • Shinoka T, Breuer CK, Tanel RE, Zund G, Miura T, Ma PX, Langer R, Vacanti JP, Mayer JE Jr (1995) Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann Thorac Surg 60:S513–S516

    Article  Google Scholar 

  • Shinoka T, Ma PX, Shum-Tim D, Breuer CK, Cusick RA, Zund G, Langer R, Vacanti JP, Mayer JE Jr (1996) Tissue-engineered heart valves. Autologous valve leaflet replacement study in a lamb model. Circulation 94:Ii164–Ii168

    Google Scholar 

  • Simon P, Kasimir MT, Seebacher G, Weigel G, Ullrich R, Salzer-Muhar U, Rieder E, Wolner E (2003) Early failure of the tissue engineered porcine heart valve synergraft in pediatric patients. Eur J Cardiothorac Surg 23:1002–1006, Discussion 1006

    Article  Google Scholar 

  • Sodian R, Schaefermeier P, Abegg-Zips S, Kuebler WM, Shakibaei M, Daebritz S, Ziegelmueller J, Schmitz C, Reichart B (2010) Use of human umbilical cord blood-derived progenitor cells for tissue-engineered heart valves. Ann Thorac Surg 89:819–828

    Article  Google Scholar 

  • Stock UA, Nagashima M, Khalil PN, Nollert GD, Herden T, Sperling JS, Moran A, Lien J, Martin DP, Schoen FJ, Vacanti JP, Mayer JE Jr (2000) Tissue-engineered valved conduits in the pulmonary circulation. J Thorac Cardiovasc Surg 119:732–740

    Article  Google Scholar 

  • Vincentelli A, Wautot F, Juthier F, Fouquet O, Corseaux D, Marechaux S, Le Tourneau T, Fabre O, Susen S, Van Belle E, Mouquet F, Decoene C, Prat A, Jude B (2007) In vivo autologous recellularization of a tissue-engineered heart valve: are bone marrow mesenchymal stem cells the best candidates? J Thorac Cardiovasc Surg 134:424–432

    Article  Google Scholar 

  • Weber B, Scherman J, Emmert MY, Gruenenfelder J, Verbeek R, Bracher M, Black M, Kortsmit J, Franz T, Schoenauer R, Baumgartner L, Brokopp C, Agarkova I, Wolint P, Zund G, Falk V, Zilla P, Hoerstrup SP (2011) Injectable living marrow stromal cell-based autologous tissue engineered heart valves: first experiences with a one-step intervention in primates. Eur Heart J 32:2830–2840

    Article  Google Scholar 

  • Zund G, Breuer CK, Shinoka T, Ma PX, Langer R, Mayer JE, Vacanti JP (1997) The in vitro construction of a tissue engineered bioprosthetic heart valve. Eur J Cardiothorac Surg 11:493–497

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Shum-Tim M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chung, J., Shum-Tim, D. (2015). Autologous Bioengineered Heart Valves: An Update. In: Suuronen, E., Ruel, M. (eds) Biomaterials for Cardiac Regeneration. Springer, Cham. https://doi.org/10.1007/978-3-319-10972-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10972-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10971-8

  • Online ISBN: 978-3-319-10972-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics