Skip to main content

Phytoremediation of Copper-Contaminated Soil

  • Chapter
  • First Online:
Phytoremediation

Abstract

Concentration of Cu in European topsoils vary in a broad range (0.8–256 mg/kg), which is strongly related to regional and local geology, with additional impacts from anthropogenic pollution. An important anthropogenic source of local soil enrichment in Cu is deposition of airborne dust released during metal processing—copper metallurgy is a large source of emissions containing Cu and other metals, such as Pb, Cd, sometimes Ni, and highly toxic, semimetallic As. Urban and industrial areas are also affected by a wide variety of activities, such as traffic, housing, and metal industry. When the level of soil contamination is too high and dangerous for humans and animals it should be reduced. Soil remediation consists of actions of removal, control, containment, or reduction of contaminants in soil to a level safe for human health and the environment.

The basic principle of soil cleanup involves the removal of pollutants from the soil and recovery of decontaminated soil. Various technical methods have been developed for cleaning up soils contaminated with heavy metals. All of them are technologically much more advanced—in consequence also more expensive—than the methods of metal immobilization.

Better results may be obtained by electrokinetic processes carried out ex situ. In practice, however, the removal of metallic pollutants, including Cu, from soils by electrochemical methods poses a lot of problems. Bioleaching can be used in the case of soils contaminated with copper—both in situ and ex situ, on the heaps or in bioreactors. The technology involves different groups of bacteria, usually of the genera Acidithiobacillus, Acetobacter, Acidophilum, Arthrobacter, and Pseudomonas.

Phytoremediation applies to a group of technologies that use either naturally occurring or genetically engineered plants to improve the properties of polluted soils or to remove contaminants from soils. Phytostabilization may be basically considered as an extension of in situ immobilization technology and focuses on long-term stabilization and containment of pollutants in soil by their sequestration in the plant rhizosphere and chemical fixation with amendments. Phytoextraction is a concept of soil decontamination that involves the use of plants to remove (extract) pollutants, especially heavy metals and metalloids, from soil by root uptake and subsequent transport to aerial parts of plants. The species in which Cu occurs in the reclaimed soil may undergo considerable changes in various geochemical processes, such as mineral weathering. Moreover, the changes in Cu speciation and potential mobility may also result from biochemical processes associated with improved soil biological activity.

Hyperaccumulation of copper is an effect of active uptake of metals from the soil and is an efficacious defense mechanism against toxicity, based mainly on the formation of complexes with citric acid, phytochelatins PC2 and PC3, and metallothioneins.

It is worth underlining that transgenic plants able to take up extraordinarily high amounts of metals from soil have been introduced. There is potential use for hyperaccumulators, estimated at about 450 plant species, especially in phytoremediation of areas highly polluted with trace elements. Generally, the use of hyperaccumulating plant species is connected with phytoextraction time ranging from 2 to 60 years, whereas nonhyperaccumulating plants require 25–2,800 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramovitch RA, Lu CQ, Hicks E, Sinard J (2003) In situ remediation of soils contaminated with toxic metal ions using microwave energy. Chemosphere 53:1077–1085. doi:10.1016/S0045-6535(03)00572-1

    CAS  PubMed  Google Scholar 

  • Abreu MM, Matias MJ, Clara M, Magalhães F, Basto MJ (2008) Impacts on water, soil and plants from the abandoned Miguel Vacas copper mine, Portugal. J Geochem Explor 96:161–170. doi:10.1016/j.gexplo.2007.04.012

    CAS  Google Scholar 

  • Adriano DC (1986) Trace elements in the terrestrial environment. Springer, Berlin, 533

    Google Scholar 

  • Ajmone-Marsan F, Biasioli M (2010) Trace elements in soils of urban areas. Water Air Soil Pollut 213:121–143. doi:10.1007/s11270-010-0372-6

    CAS  Google Scholar 

  • Alexandrovskaya EI, Alexandrovskiy AL (2000) History of the cultural layer in Moscow and accumulation of anthropogenic substances in it. Catena 41:249–259. doi:10.1016/S0341-8162(00)00107-7

    CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Review. Chemosphere 91:869–881. doi:10.1016/j.chemosphere.2013.01.075

    CAS  PubMed  Google Scholar 

  • Alloway BJ (2004) Contamination of soils in domestic gardens and allotments: a brief overview. Land Contam Reclam 12:179–187

    Google Scholar 

  • Alloway BJ (ed) (2013) Heavy metals in soils: trace metals and metalloids, and their bioavailability, vol 22, Environmental pollution series. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Alvarenga P, Gonçalves AP, Fernandes RM, de Varenne A, Vallini G, Duarte E, Cunha-Queda G (2008) Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass. Sci Total Environ 406:43–56. doi:10.1016/j.scitotenv.2008.07.061

    CAS  PubMed  Google Scholar 

  • Anderson CWN, Brooks RR, Chiarucci A, LaCoste CJ, Leblanc M, Robinson BH, Simcock R, Stewart RB (1999) Phytomining for nickel, thallium and gold. J Geochem Explor 67:407–415. doi:10.1016/S0375-6742(99)00055-2

    CAS  Google Scholar 

  • Andreazza R, Okeke BC, Lambais MR, Bortolon L, de Melo GWB, de Oliveira Camargo FA (2010) Bacterial stimulation of copper phytoaccumulation by bioaugmentation with rhizosphere bacteria. Chemosphere 81:1149–1154. doi:10.1016/j.chemosphere.2010.09.047

    CAS  PubMed  Google Scholar 

  • Arwidsson Z, Elgh-Dalgren K, von Kronhelm T, Sjöberg R, Allard B, van Hees P (2010) Remediation of heavy metal contaminated soil washing residues with amino polycarboxylic acids. J Hazard Mater 173:697–704. doi:10.1016/j.jhazmat.2009.08.141

    CAS  PubMed  Google Scholar 

  • Babaoğlu M, Gezgin S, Topal A, Sade B, Dural H (2004) Gypsophila sphaerocephala Fenzl ex Tchihat. A boron hyperaccumulator plant species that may phytoremediate soils with toxic B levels. Turk J Bot 28:273–278. doi:10.1590/S0103-90162010000600014

    Google Scholar 

  • Bade R, Oh S, Shin WS (2012) Assessment of metal bioavailability in smelter-contaminated soil before and after lime amendment. Ecotoxicol Environ Saf 80:299–307. doi:10.1016/j.ecoenv.2012.03.019

    CAS  PubMed  Google Scholar 

  • Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conserv Recycl 11:41–49. doi:10.1016/0921-3449(94)90077-9

    Google Scholar 

  • Barcan V (2002) Leaching of nickel and copper from soil contaminated by metallurgical dust. Environ Int 28:63–68. doi:10.1016/S0160-4120(02)00005-3

    CAS  PubMed  Google Scholar 

  • Barcan V, Kovnatsky E (1998) Soil surface geochemical anomaly around the copper-nickel metallurgical smelter. Water Air Soil Pollut 103:197–218. doi:10.1023/A:1004930316648

    CAS  Google Scholar 

  • Bech J, Poschenrieder C, Llugany M, Barceló J, Tume P, Tobias FJ, Barranzuela JL, Vásquez ER (1997) Arsenic and heavy metal contamination of soil and vegetation around a copper mine in Northern Peru. Sci Total Environ 203:83–91. doi:10.1016/S0048-9697(97)00136-8

    CAS  Google Scholar 

  • Bennett LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EA (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J Environ Qual 32:432–440. doi:10.2134/jeq2003.4320

    CAS  PubMed  Google Scholar 

  • Berti WR, Cunningham SD (2000) Phytostabilization of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 71–88

    Google Scholar 

  • Bes C, Mench M (2008) Remediation of copper-contaminated topsoils from a wood treatment facility using in situ stabilisation. Environ Pollut 156:1128–1139. doi:10.1016/j.envpol.2008.04.006

    CAS  PubMed  Google Scholar 

  • Besnard E, Chenu C, Robert M (2001) Influence of organic amendments on copper distribution among particle-size and density fractions in Champagne vineyard soils. Environ Pollut 112:329–337. doi:10.1016/S0269-7491(00)00151-2

    CAS  PubMed  Google Scholar 

  • Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manage 105:103–120. doi:10.1016/j.jenvman.2012.04.002

    CAS  PubMed  Google Scholar 

  • Biasioli M, Barberis R, Ajmone-Marsan F (2006) The influence of a large city on some soil properties and metals content. Sci Total Environ 356:154–164. doi:10.1016/j.scitotenv.2005.04.033

    CAS  PubMed  Google Scholar 

  • Birke M, Rauch U (2000) Urban geochemistry: investigations in the Berlin metropolitan area. Environ Geochem Health 22:223–248

    Google Scholar 

  • Blacksmith Institute (2008a) The world’s worst polluted places. Top polluted places 2007. In: Top ten list of the world’s most dangerous pollution problems. Blacksmith Institute, New York

    Google Scholar 

  • Blacksmith Institute (2008b) Top 10. The world’s worst pollution problems. Blacksmith Institute, New York

    Google Scholar 

  • Blaylock MJ (2000) Field demonstrations of phytoremediation of lead-contaminated soils. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, FL, pp 1–12

    Google Scholar 

  • Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 53–70

    Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865. doi:10.1021/es960552a

    Google Scholar 

  • Boojar MMA, Goodarzi F (2007) The copper tolerance strategies and the role of antioxidative enzymes in three plant species grown on copper mine. Chemosphere 67:2138–2147. doi:10.1016/j.chemosphere.2006.12.071

    CAS  PubMed  Google Scholar 

  • Boyd RS (2012) Plant defense using toxic inorganic ions: conceptual models of the defensive enhancement and joint effects hypotheses. Plant Sci 195:88–95. doi:10.1016/j.plantsci.2012.06.012

    CAS  PubMed  Google Scholar 

  • Brierley CL (2008) How will biomining be applied in future? Trans Nonferrous Met Soc China 18:1302–1310. doi:10.1016/S1003-6326(09)60002-9

    CAS  Google Scholar 

  • Brooks RR (ed) (1998) Plants that hyperaccumulate heavy metals. CAB Internat. London

    Google Scholar 

  • Brooks RR, Robinson BH (1998) The potential use of hyperaccumulators and other plants for phytomining. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, New York

    Google Scholar 

  • Brooks RR, Lee J, Reeves RD, Jaffre T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–77. doi:10.1016/0375-6742(77)90074-7

    CAS  Google Scholar 

  • Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends Plant Sci 3:359–362. doi:10.1016/S1360-1385(98)01283-7

    Google Scholar 

  • Brown SL, Chaney RL, Angle JS, Baker AJM (1994) Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc- and cadmium-contaminated soil. J Environ Qual 23:1151–1157

    CAS  Google Scholar 

  • Brun LA, Maillet J, Hinsinger P, Pépin M (2001) Evaluation of copper availability to plants in copper-contaminated vineyard soils. Environ Pollut 111:293–302. doi:10.1016/S0269-7491(00)00067-1

    CAS  PubMed  Google Scholar 

  • Brun LA, Le Corff J, Maillet J (2003) Effects of elevated soil copper on phenology, growth and reproduction of five ruderal plant species. Environ Pollut 122:361–368. doi:10.1016/S0269-7491(02)00312-3

    CAS  PubMed  Google Scholar 

  • Buchireddy PR, Bricka RM, Gent DB (2009) Electrokinetic remediation of wood preservative contaminated soil containing copper, chromium, and arsenic. J Hazard Mater 162:490–497. doi:10.1016/j.jhazmat.2008.05.092

    CAS  PubMed  Google Scholar 

  • Buczkowski R, Kondzielski I, Szymański T (2002) Remediation of soils polluted with heavy metals. (Metody remediacji gleb zanieczyszczonych metalami ciężkimi). UMK Toruń, 95. (in Polish)

    Google Scholar 

  • Burgstaller W, Schinner F (1993) Leaching of metals with fungi. J Biotechnol 27:91–116

    CAS  Google Scholar 

  • Burt R, Wilson MA, Keck TJ, Dougherty BD, Strom DE, Lindahl JA (2003) Trace element speciation in selected smelter-contaminated soils in Anaconda and Deer Lodge Valley, Montana, USA. Adv Environ Res 8:51–67. doi:10.1016/S1093-0191(02)00140-5

    CAS  Google Scholar 

  • Carlon C (ed) (2007) Derivation methods of soil screening values in Europe. A review and evaluation of national procedures towards harmonization. European Commission, JRC, Ispra, 306 pp

    Google Scholar 

  • Casali CA, Moterle DF, Rheinheimer DS, Brunetto G, Corcini ALM, Kaminski J (2008) Copper forms and desorption in soils under grapevine in the Serra Gaúcha of Rio Grande do Sul. R Bras Ci Solo 32:1479–1487

    CAS  Google Scholar 

  • Chandra Sekhar K, Kamala CT, Chary NS, Balaram V, Garcia G (2005) Potential of Hemidesmus indicus for the phytoextraction of lead from industrially contaminated soils. Chemosphere 58:507–514. doi:10.1016/j.chemosphere.2004.09.022

    CAS  PubMed  Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    CAS  PubMed  Google Scholar 

  • Chaney RL, Angle JS, McIntosh MS, Reeves RD, Li YM, Brewer EP, Chen KY, Roseberg RJ, Perner H, Synkowski EC, Broadhurst CL, Wang S, Baker AJ (2005) Using hyperaccumulator plants to phytoextract soil Ni and Cd. Review. Z Naturforsch C 60:190–198

    CAS  PubMed  Google Scholar 

  • Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. Review. J Environ Qual 36:1429–1443. doi:10.2134/jeq2006.0514

    CAS  PubMed  Google Scholar 

  • Chen H, Cutright T (2001) EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere 45:21–28. doi:10.1016/S0045-6535(01)00031-5

    CAS  PubMed  Google Scholar 

  • Chen YX, Lin Q, Luo YM, He YF, Zhen SJ, Yu YL, Wong MH (2003) The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere 50:807–811. doi:10.1016/S0045-6535(02)00223-0

    CAS  PubMed  Google Scholar 

  • Chen CL, Lo SL, Kuan WH, Hsieh CH (2005) Stabilization of Cu in acid-extracted industrial sludge using a microwave process. J Hazard Mater 123:256–261. doi:10.1016/j.jhazmat.2005.04.014

    CAS  PubMed  Google Scholar 

  • Cherian S, Oliveira MM (2005) Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Technol 39:9377–9390. doi:10.1021/es051134l

    CAS  PubMed  Google Scholar 

  • Chopin EIB, Alloway BJ (2007) Distribution and mobility of trace elements in soils and vegetation around the mining and smelting areas of Tharsis, Ríotinto and Huelva, Iberian Pyrite Belt, SW Spain. Water Air Soil Pollut 182:245–261. doi:10.1007/s11270-007-9336-x

    CAS  Google Scholar 

  • Chung HI (2009) Field applications on electrokinetic reactive pile technology for removal of Cu from in situ and excavated soils. Sci Technol 44:2341–2353. doi:10.5772/54334

    CAS  Google Scholar 

  • Ciccu R, Ghiani M, Serci A, Fadda S, Peretti R, Zucca A (2003) Heavy metal immobilization in the mining-contaminated soils using various industrial wastes. Miner Eng 16:187–192. doi:10.1016/S0892-6875(03)00003-7

    CAS  Google Scholar 

  • Ciura J, Poniedziałek M, Sękara A, Jędrszczyk E (2005) The possibility of using crops as metal phytoremediants. Polish J Environ Stud 14:17–22

    CAS  Google Scholar 

  • Cotter-Howells JD, Caporn S (1996) Remediation of contaminated land by formation of heavy metal phosphates. Appl Geochem 11:335–342. doi:10.1016/0883-2927(95)00042-9

    CAS  Google Scholar 

  • Crecelius EA, Johnson CJ, Hofer GC (1974) Contamination of soils near a copper smelter by arsenic, antimony and lead. Water Air Soil Pollut 3:337–342. doi:10.1007/BF00226464

    CAS  PubMed  Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects for phytoremediation. Plant Physiol 110:715–719

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cuske M, Gersztyn L, Karczewska A (2013) The influence of pH on solubility of copper in soils contaminated by copper industry. Civil and Environmental Engineering Reports 11:31–39

    Google Scholar 

  • De Gregori G, Lobos S, Pinochet H, Potin-Gautier M, Astruc M (2000) Comparative study of copper and selenium pollution in agricultural ecosystems from Valparaiso Region, Chile. Environ Technol 21:307–316. doi:10.1080/09593332108618112

    Google Scholar 

  • Deng X, Chai L, Yang Z, Tang C, Tong H, Yuan P (2012) Bioleaching of heavy metals from a contaminated soil using indigenous Penicillium chrysogenum strain F1. J Hazard Mater 233–234:25–32. doi:10.1016/j.jhazmat.2012.06.054

    PubMed  Google Scholar 

  • Dermont G, Bergeron M, Mercier G, Richer-Lafleche M (2008) Soil washing for metal removal: a review of physical/chemical technologies and field applications. J Hazard Mater 152:1–31. doi:10.1016/j.jhazmat.2007.10.043

    CAS  PubMed  Google Scholar 

  • Dermont G, Bergeron M, Richer-Laflèche M, Mercie G (2010) Remediation of metal-contaminated urban soil using flotation technique. Sci Total Environ 408:1199–1211. doi:10.1016/j.scitotenv.2009.11.036

    CAS  PubMed  Google Scholar 

  • Derome J (2000) Detoxification and amelioration of heavy-metal contaminated forest soils by means of liming and fertilisation. Environ Pollut 107:79–88. doi:10.1016/S0269-7491(99)00132-3

    CAS  PubMed  Google Scholar 

  • Derome J, Lindroos AJ (1998) Effects of heavy metal contamination on macronutrient availability and acidification parameters in forest soil in the vicinity of the Harjavalta Cu-Ni smelter, SW Finland. Environ Pollut 99:225–232. doi:10.1016/S0269-7491(97)00185-1

    CAS  PubMed  Google Scholar 

  • Diatta JB, Grzebisz W, Apolinarska K (2003) A study of soil pollution by heavy metals in the city of Poznań (Poland) using dandelion (Taraxacum officinale web) as a bioindicator. EJPAU, Environmental Development 6

    Google Scholar 

  • Dickinson NM, Pulford ID (2005) Cadmium phytoextraction using short-rotation coppice Salix: the evidence trail. Environ Int 31:609–613. doi:10.1016/j.envint.2004.10.013

    CAS  PubMed  Google Scholar 

  • Dradrach A, Szopka K, Karczewska A, Bogacz A (2012) Diversity of total copper content in the vegetation layer of urban lawns in Wrocław. Zeszyty Naukowe UP we Wrocławiu, 588, Rolnictwo CII, pp 35–42 (in Polish)

    Google Scholar 

  • Eapen S, D’Souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23:97–114. doi:10.1016/j.biotechadv.2004.10.001

    CAS  PubMed  Google Scholar 

  • Ebbs SD, Kochian LV (1998) Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare) and Indian mustard (Brassica juncea). Environ Sci Technol 32:802–806. doi:10.1021/es970698p

    CAS  Google Scholar 

  • Ek AS, Löfgren S, Bergholm J, Qvarfort U (2001) Environmental effects of one thousand years of copper production at Falun, central Sweden. Ambio 30:96–103. doi:10.1023/A:1011112020621

    CAS  PubMed  Google Scholar 

  • Ensley BD (2000) Rationale for use of phytoremediation. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 3–12

    Google Scholar 

  • Ernst WHO (2005) Phytoextraction of mine wastes—options and impossibilities. Chem Erde-Geochem 65:29–42. doi:10.1016/j.chemer.2005.06.001

    CAS  Google Scholar 

  • EU (2006) European Commission. Proposal for a Directive of the European Parliament and of the Council establishing a framework for the protection of soil and amending Directive 2004/35/EC. Directive (COM (2006) 232)

    Google Scholar 

  • Evangelou MWH, Ebel M, Schaeffer A (2007) Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68:989–1003. doi:10.1016/j.chemosphere.2007.01.062

    CAS  PubMed  Google Scholar 

  • Faucon MP, Ngoy Shutcha M, Meerts P (2007) Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: influence of washing and metal concentrations in soil. Plant Soil 301:29–36. doi:10.1007/s11104-007-9405-3

    CAS  Google Scholar 

  • Faucon MP, Colinet G, Mahy G, Ngongo Luhembwe M, Verbruggen N, Meerts P (2009) Soil influence on Cu and Co uptake and plant size in the cuprophytes Crepidorhopalon perennis and C. tenuis (Scrophulariaceae) in SC Africa. Plant Soil 317:201–212. doi:10.1007/s11104-008-9801-3

    CAS  Google Scholar 

  • Fernandes JC, Henriques FS (1991) Biochemical, physiological, and structural effects of excess copper in plants. Bot Rev 57:246–273. doi:10.1007/BF02858564

    Google Scholar 

  • Fernández-Calviño D, Rodríguez-Suárez JA, López-Periago E, Arias-Estévez M, Simal-Gándara J (2008a) Copper content of soils and river sediments in a winegrowing area, and its distribution among soil or sediment components. Geoderma 145:91–97. doi:10.1016/j.geoderma.2008.02.011

    Google Scholar 

  • Fernández-Calviño D, Pateiro-Moure M, López-Periago E, Arias-Estévez M, Nóvoa-Muñoz JC (2008b) Copper distribution and acid-base mobilization in vineyard soils and sediments from Galicia (NW Spain). Eur J Soil Sci 59:315–326

    Google Scholar 

  • Fischer K, Rainer C, Bieniek D, Kettrup A (1992) Desorption of heavy metals from typical soil components (clay, peat) with glycine. Int J Environ Anal Chem 46:53–62. doi:10.1080/03067319208026996

    CAS  Google Scholar 

  • FOREGS (2005) Geochemical atlas of Europe. In: Salminen R (ed) Part 1. Background information, methodology and maps, EuroGeoSurveys. Geological Survey of Finland, Espoo

    Google Scholar 

  • Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119. doi:10.1016/j.geoderma.2004.01.002

    CAS  Google Scholar 

  • Gałuszka A (2005) The use of microorganisms and plants in metal extracting. Prz Geol 53:858–862

    Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77:229–236. doi:10.1016/S0960-8524(00)00108-5

    CAS  PubMed  Google Scholar 

  • Ghaderian SM, Ghotbi Ravandi AA (2010) Accumulation of copper and other heavy metals by plants growing on Sarcheshmeh copper mining area, Iran. J Geochem Explor 123:25–32. doi:10.1016/j.gexplo.2012.06.022

    Google Scholar 

  • Ginocchio R (2000) Effects of a copper smelter on a grassland community in the Puchuncavı́ Valley, Chile. Chemosphere 41:15–23. doi:10.1016/S0045-6535(99)00385-9

    CAS  PubMed  Google Scholar 

  • Goecke P, Ginocchio R, Mench M, Neaman A (2011) Amendments promote the development of Lolium perenne in soils affected by historical copper smelting operations. Int J Phytoremediation 13:552–566. doi:10.1080/1522652010.495150

    CAS  PubMed  Google Scholar 

  • Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122. doi:10.1007/s00425-006-0225-0

    PubMed  Google Scholar 

  • Goodfellow M, Brown AB, Cai JP, Chun JS, Collins MD (1997) Amycolatopsis japonicum sp. nov, an actinomycete producing (S,S)- N,N-ethylenediaminedisuccinic acid. Syst Appl Microbiol 20:78–84. doi:10.1016/S0723-2020(97)80051-3

    CAS  Google Scholar 

  • Grandlic CJ, Mendez MO, Chorover J, Machado B, Maier RM (2008) Plant growth-promoting bacteria for phytostabilization of mine tailings. Environ Sci Technol 42:2079–2084. doi:10.1021/es072013j

    CAS  PubMed  Google Scholar 

  • Gray CW, Dunham SJ, Dennis PG, Zhao FJ, McGrath SP (2006) Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environ Pollut 142:530–539. doi:10.1016/j.envpol.2005.10.017

    CAS  PubMed  Google Scholar 

  • Grčman H, Velikonja-Bolta Š, Vodnik D, Kos B, Leštan D (2001) EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant Soil 235:105–114

    Google Scholar 

  • Grčman H, Vodnik D, Velikonja-Bolta S, Leštan D (2003) Ethylenediaminedissuccinate as a new chelate for environmentally safe enhanced lead phytoextraction. J Environ Qual 32:500–506

    PubMed  Google Scholar 

  • Greinert A (1995) Wpływ dodatku iłów do gleby piaskowej na plonowanie roślin oraz sorpcję i przyswajalność Pb, Cd i Zn. Zesz Probl Post Nauk Roln 418b:685–690 (in Polish)

    Google Scholar 

  • Grudziński W, Matuła M, Sielewiesiuk J, Kernen P (2000) Fitoremediacja—sposób oczyszczania środowiska. Kosmos 49:135–147 (in Polish)

    Google Scholar 

  • Grzebisz W, Cieśla L, Komisarek J, Potarzycki J (2002) Geochemical assessment of heavy metals pollution of urban soils. Pol J Environ Stud 11:493–499

    CAS  Google Scholar 

  • Gworek B (1993) Wpływ zeolitów na zmniejszenie akumulacji metali ciężkich w roślinach uprawianych na glebach zanieczyszczonych, Rozprawy i Monografie. SGGW, Warszawa, p 167 (in Polish)

    Google Scholar 

  • Hong S, Candelone JP, Patterson CC, Boruto CF (1996) History of ancient copper smelting pollution during Roman and medieval times recorded in Greenland ice. Science 272:246–248. doi:10.1126/science.272.5259.246

    CAS  Google Scholar 

  • Hu N, Li Z, Huang P, Tao C (2006) Distribution and mobility of metals in agricultural soils near a copper smelter in South China. Environ Geochem Health 28:19–26. doi:10.1007/s10653-005-9007-z

    CAS  PubMed  Google Scholar 

  • Huang JW, Chen J, Berti WB, Cunningham SD (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805. doi:10.1021/es9604828

    CAS  Google Scholar 

  • Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytol 134(1):75–84

    Google Scholar 

  • Hursthouse A, Tognarelli D, Tucker P, Marsan FA, Martini C, Madrid L, Madrid F, Diaz-Barrientos E (2004) Metal content of surface soils in parks and allotments from three European cities: initial pilot study results. Land Contam Reclam 12:189–196. doi:10.2462/09670513.644

    Google Scholar 

  • Hutchinson TC, Whitby LM (1977) The effects of acid rainfall and heavy metal particulates on a boreal forest ecosystem near the Sudbury smelting region of Canada. Water Air Soil Pollut 7:421–438. doi:10.1007/BF00285542

    CAS  Google Scholar 

  • ICSG (2013) International copper study group: the world copper factbook 2013. ICSG, Lisbon, Portugal

    Google Scholar 

  • Ikenaka Y, Nakayama SMM, Muzandu K, Choongo K, Teraoka H, Mizuno N, Ishizuka M (2010) Heavy metal contamination of soil and sediment in Zambia. Afr J Environ Sci Technol 4:729–739

    CAS  Google Scholar 

  • InfoMine (2014) InfoMine’s Mining Company & Property Database 2014. www.infomine.com

  • Jacobson AR, Dousset S, Guichard N, Baveye PC, Andreux F (2005) Diuron mobility through vineyard soils contaminated with copper. Environ Pollut 138:250–259. doi:10.1016/j.envpol.2005.04.004

    CAS  PubMed  Google Scholar 

  • Jansen S, Broadley MR, Smets E (2002) Aluminium hyperaccumulation in angiosperms: a review of its phylogenetic significance. Bot Rev 68:235–269. doi:10.1663/0006-8101(2002)068[0235:ahiaar]2.0.co;2

    Google Scholar 

  • Jensen JK, Holm PE, Nejrup J, Larsen MB, Borggaard OK (2009) The potential of willow for remediation of heavy metal polluted calcareous urban soils. Environ Pollut 157:931–937. doi:10.1016/j.envpol.2008.10.024

    CAS  PubMed  Google Scholar 

  • Jiang LY, Yang XE, He ZL (2004) Growth response and phytoextraction of copper at different levels in soils by Elsholtzia splendens. Chemosphere 55:1179–1187. doi:10.1016/j.chemosphere.2004.01.026

    CAS  PubMed  Google Scholar 

  • Johnson DB (2001) Importance of microbial ecology in the development of new mineral technologies. Hydrometallurgy 59:147–158. doi:10.1016/S0304-386X(00)00183-3

    CAS  Google Scholar 

  • Johnson DB (2010) The biogeochemistry of biomining, Chapter 19. In: Barton LL et al (eds) Geomicrobiology: molecular and environmental perspective. Springer Science & Business Media BV, Dordrecht, The Netherlands, pp 401–426

    Google Scholar 

  • Kabała C, Singh BR (2001) Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter. J Environ Qual 30:485–492. doi:10.2134/jeq2001.302485x

    PubMed  Google Scholar 

  • Kabała C, Medyńska A, Chodak T, Jezierski P, Gałka B (2008) Changes of copper and arsenic concentrations in soils surrounding copper ore tailings impoundment in 12-year long cycle of monitoring investigation. Roczniki Gleboznawcze 59:81–88 (in Polish)

    Google Scholar 

  • Kabała C, Chodak T, Szerszeń L, Karczewska A, Szopka K, Frątczak U (2009) Factors influencing the concentration of heavy metals in soils of allotment gardens in the city of Wroclaw, Poland. Fresen Environ Bull 18:1118–1124

    Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC, Boca Raton, FL

    Google Scholar 

  • Kabata-Pendias A, Piotrowska M, Witek T (1993) Assessment of soil and plant pollution with heavy metals and sulphur. Guidelines for agriculture, ser. P (53a), IUNG Pulawy

    Google Scholar 

  • Karami N, Clemente R, Moreno-Jiménez E, Lepp NW, Beesley L (2011) Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J Hazard Mater 191:41–48. doi:10.1016/j.jhazmat.2011.04.025

    CAS  PubMed  Google Scholar 

  • Karczewska A (1996) Chemical speciation and fate of selected heavy metals in soils strongly polluted by copper smelters. In: Reuther R (ed) Geochemical approaches to environmental engineering of metals, Environmental science. Springer, Berlin, pp 55–79

    Google Scholar 

  • Karczewska A (2002) Metale ciężkie w glebach zanieczyszczonych emisjami hut miedzi - formy i rozpuszczalność. Rozprawa habilitacyjna. Zeszyty Naukowe AR we Wrocławiu. Rozprawy CLXXXIV, Wydział Rolniczy, Nr 432, Wrocław. (in Polish)

    Google Scholar 

  • Karczewska A, Bogda A (2006) Heavy metals in soils of former mining areas in the Sudety Mts.—their forms and solubility. Polish J Environ Stud 15:104–110

    Google Scholar 

  • Karczewska A, Milko K (2010) Effects of chelating agents on Cu, Pb and Zn solubility in polluted soils and tailings produced by copper industry. Ecol Chem Eng A 17:395–403

    CAS  Google Scholar 

  • Karczewska A, Gałka B, Kabała C, Szopka K, Kocan K, Dziamba K (2009a) Effects of various chelators on the uptake of Cu, Pb, Zn and Fe by maize and Indian mustard from silty loam soil polluted by the emissions from copper smelter. Fresen Environ Bull 18:1967–1974

    CAS  Google Scholar 

  • Karczewska A, Gałka B, Kocan K (2009b) A carryover effect of the chelating agents EDTA and EDDS applied to soils on the uptake of copper and iron by maize in the second year of a pot experiment. J Elem 14:693–703

    Google Scholar 

  • Karczewska A, Kaszubkiewicz J, Jezierski P, Kabała C, Król K (2010) Level of soil contamination with copper, lead and cadmium within a protection zone of copper smelter Legnica in the years 1982 and 2005. Roczniki Gleboznawcze 61:45–51 (in Polish)

    CAS  Google Scholar 

  • Karczewska A, Orłów K, Kabała C, Szopka K, Gałka B (2011) Effects of chelating compounds on mobilization and phytoextraction of copper and lead in contaminated soils. Commun Soil Sci Plant Anal 42:1379–1389. doi:10.1080/00103624.2011.577858

    CAS  Google Scholar 

  • Kelly J, Thornton I, Simpson PR (1996) A study of the influence of anthropogenic activity on the heavy metal content of soils in traditionally industrial and non-industrial areas of Britain. Appl Geochem 11:363–370. doi:10.1016/0883-2927(95)00084-4

    CAS  Google Scholar 

  • KGHM (2013) KGHM Polska Miedź S.A. www.kghm.pl, www.raportcsr.kghm.pl

  • Kidd P, Barceló J, Bernal MP, Navari-Izzo F, Poschenrieder C, Shilev S, Clemente R, Monterroso C (2009) Trace element behaviour at the root-soil interface: implications in phytoremediation. Environ Exp Bot 67:243–259. doi:10.1016/j.envexpbot.2009.06.013

    CAS  Google Scholar 

  • Kiikkilä O (2003) Heavy-metal pollution and remediation of forest soil around the Harjavalta Cu–Ni smelter, in SW Finland. Silva Fennica 37:399–415

    Google Scholar 

  • Kiikkilä O, Perkiömäki J, Barnette M, Derome J, Pennanen T, Tulisalo E, Fritze H (2001) In situ bioremediation through mulching of soil polluted by a copper-nickel smelter. J Environ Qual 30:1134–1143. doi:10.2134/jeq2001.3041134x

    PubMed  Google Scholar 

  • Klang-Westin E, Perttu K (2002) Effects of nutrient supply and soil cadmium concentration on cadmium removal by willow. Biomass Bioenergy 23:415–426. doi:10.1016/S0961-9534(02)00068-5

    CAS  Google Scholar 

  • Komárek M, Tlustoš P, Száková J, Chrastný V, Ettler V (2007) The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils. Chemosphere 67:640–651. doi:10.1016/j.chemosphere.2006.11.010

    PubMed  Google Scholar 

  • Komárek M, Tlustoš P, Száková J, Chrastný V (2008a) The use of poplar during a two-year induced phytoextraction of metals from contaminated agricultural soils. Environ Pollut 151:27–38. doi:10.1016/j.envpol.2007.03.010

    PubMed  Google Scholar 

  • Komárek M, Száková J, Rohošková M, Javorská H, Chrastný V, Balík J (2008b) Copper contamination of vineyard soils from small wine producers: a case study from the Czech Republic. Geoderma 147:16–22. doi:10.1016/j.geoderma.2008.07.001

    Google Scholar 

  • Komárek M, Čadková E, Chrastný V, Bordas F, Bollinger J (2010) Contamination of vineyard soils with fungicides: a review of environmental and toxicological aspects. Environ Int 36:138–151. doi:10.1016/j.envint.2009.10.005

    PubMed  Google Scholar 

  • Koppolu L, Clements LD (2003) Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part I: Preparation of synthetic hyperaccumulator biomass. Biomass Bioenergy 24:69–79. doi:10.1016/S0961-9534(02)00074-0

    CAS  Google Scholar 

  • Kos B, Leštan D (2003) Influence of a biodegradable ([S,S]-EDDS) and nondegradable (EDTA) chelate and hydrogel modified soil water sorption capacity on Pb phytoextraction and leaching. Plant Soil 253:403–411. doi:10.1023/A:1024861725626

    CAS  Google Scholar 

  • Kotrba P, Najmanova J, Macek T, Ruml T, Mackova M (2009) Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 27:799–810. doi:10.1016/j.biotechadv.2009.06.003

    CAS  PubMed  Google Scholar 

  • Kozlov MV (2005) Sources of variation in concentrations of nickel and copper in mountain birch foliage near a nickel-copper smelter at Monchegorsk, north-western Russia: results of long-term monitoring. Environ Pollut 135:91–99. doi:10.1016/j.envpol.2004.10.005

    CAS  PubMed  Google Scholar 

  • Kozlov MV, Zvereva EL (2007) Industrial barrens: extreme habitats created by non-ferrous metallurgy. Rev Environ Sci Biotechnol 6:231–259. doi:10.1007/s11157-006-9117-9

    CAS  Google Scholar 

  • Krämer U, Chardonnens AN (2001) The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Appl Microbiol Biotechnol 55:661–672. doi:10.1007/s002530100631

    PubMed  Google Scholar 

  • Kumar PBA, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Google Scholar 

  • Kumpiene J, Ore S, Renella G, Mench M, Lagerkvist A, Maurice C (2006) Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environ Pollut 144:62–69. doi:10.1016/j.envpol.2006.01.010

    CAS  PubMed  Google Scholar 

  • Kumpiene J, Lagerkvisk A, Maurice C (2007) Stabilization of Pb- and Cu-contaminated soil using coal fly ash and peat. Environ Pollut 145:365–373. doi:10.1016/j.envpol.2006.01.037

    CAS  PubMed  Google Scholar 

  • Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Manage 28:215–225. doi:10.1016/j.wasman.2006.12.012

    CAS  Google Scholar 

  • Küpper H, Mijovilovich A, Götz B, Kroneck PMH, Küpper FC, Meyer-Klaucke W (2009) Complexation and toxicity of copper in higher plants (I): characterisation of copper accumulation, speciation and toxicity in Crassula helmsii as a new copper hyperaccumulator. Plant Physiol 151:702–707. doi:10.1104/pp. 109.139717

    PubMed Central  PubMed  Google Scholar 

  • Kuzovkina YA, Knee M, Quigley MF (2004) Cadmium and copper uptake and translocation in five willow (Salix L.) species. Int J Phytoremediation 6:269–287. doi:10.1080/16226510490496726

    CAS  PubMed  Google Scholar 

  • Labrecque M, Teodorescu TI, Daigle S (1997) Biomass productivity and wood energy of Salix species after 2 years growth in SRIC fertilized with wastewater sludge. Biomass Bioenergy 12:409–417. doi:10.1016/S0961-9534(97)00011-1

    CAS  Google Scholar 

  • Lamb DT, Naidu R, Ming H, Megharaj M (2012) Copper phytotoxicity in native and agronomical plant species. Ecotoxicol Environ Saf 85:23–29. doi:10.1016/j.ecoenv.2012.08.018

    CAS  PubMed  Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120. doi:10.2134/jeq2002.1090

    CAS  PubMed  Google Scholar 

  • Lebeau T, Braud A, Jézéquel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153:497–522. doi:10.1016/j.envpol.2007.09.015

    CAS  PubMed  Google Scholar 

  • Lee CSL, Li X, Shi W, Cheung SCN, Thornton I (2006) Metal contamination in urban, suburban, and country park soils of Hong Kong: a study based on GIS and multivariate statistics. Sci Total Environ 356:45–61. doi:10.1016/j.scitotenv.2005.03.024

    CAS  PubMed  Google Scholar 

  • Lepp NW, Hartley J, Toti M, Dickinson NM (1997) Patterns of soil copper contamination and temporal changes in vegetation in the vicinity of a copper rod rolling factory. Environ Pollut 95:363–369. doi:10.1016/S0269-7491(96)00130-3

    CAS  PubMed  Google Scholar 

  • Leštan D, Luo C, Li X (2008) The use of chelating agents in the remediation of metal-contaminated soils: a review. Environ Pollut 153:3–13. doi:10.1016/j.envpol.2007.11.015

    PubMed  Google Scholar 

  • Li X, Thornton I (2001) Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Appl Geochem 16:1693–1706. doi:10.1016/S0883-2927(01)00065-8

    CAS  Google Scholar 

  • Lim T, Tay J, Wang J (2004) Chelating-agent-enhanced heavy metal extraction from a contaminated acidic soil. J Environ Eng 130:59–66. doi:10.1061/(ASCE)0733-9372(2004)130:1(59)

    CAS  Google Scholar 

  • Linde M, Bengtsson H, Oborn I (2001) Concentrations and pools of heavy metals in urban soils in Stockholm, Sweden. Water Air Soil Pollut 1:83–101. doi:10.1023/A:1017599920280

    CAS  Google Scholar 

  • Løbersli EM, Steinnes E (1988) Metal uptake in plants from a birch forest area near a copper smelter in Norway. Water Air Soil Pollut 37:25–39. doi:10.1007/BF00226477

    Google Scholar 

  • Lombi E, Hamon RE, Wieshammer G, McLaughlin MJ, McGrath SP (2004) Assessment of the use of industrial by-products to remediate a copper- and arsenic-contaminated soil. J Environ Qual 33:902–910. doi:10.2134/jeq2004.0902

    CAS  PubMed  Google Scholar 

  • Lottenbach B, Furrer G, Scharli H, Schulin R (1999) Immobilization of zinc and cadmium by montmorillonite compounds. Environ Sci Technol 33:2945–2952. doi:10.1021/es981317q

    Google Scholar 

  • Lottermoser B (2003) Mine wastes. Characterization, treatment and environmental impacts. Springer, Berlin

    Google Scholar 

  • Lou L, Shen Z, Li X (2004) The copper tolerance mechanisms of Elsholtzia haichowensis, a plant from copper-enriched soils. Environ Exp Bot 51:111–120. doi:10.1016/j.envexpbot.2003.08.002

    CAS  Google Scholar 

  • Luo C, Shen Z, Li X (2005) Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59:1–11. doi:10.1016/j.chemosphere.2004.09.100

    CAS  PubMed  Google Scholar 

  • Luo CL, Shen ZG, Li XD (2007) Plant uptake and the leaching of metals during the hot EDDS-enhanced phytoextraction process. Int J Phytoremediation 9:181–196. doi:10.1080/15226510701375986

    CAS  PubMed  Google Scholar 

  • Ma QY, Logan TJ, Traina SJ (1995) Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks. Environ Sci Technol 29:1118–1126. doi:10.1021/es00004a034

    CAS  PubMed  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409(6820):579. doi:10.1038/35054664

    CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manage 90:831–837. doi:10.1016/j.jenvman.2008.01.014

    PubMed  Google Scholar 

  • Mackie KA, Müller T, Kandel E (2012) Remediation of copper in vineyards. A mini review. Environ Pollut 167:16–26. doi:10.1016/j.envpol.2012.03.023

    CAS  PubMed  Google Scholar 

  • Madrid F, Liphadzi MS, Kirkham MB (2003) Heavy metal displacement in chelate-irrigated soil during phytoremediation. J Hydrol 272:107–119. doi:10.1016/S0022-1694(02)00258-5

    CAS  Google Scholar 

  • Madrid L, Diaz-Barrientos E, Ruiz-Cortés E, Reinoso R, Biasioli M, Davidson CM, Duarte AC, Grčman H, Hossack I, Hursthouse AS, Kralj T, Ljung K, Otabbong E, Rodrigues S, Urquhart GJ, Ajmone-Marsan F (2006) Variability in concentrations of potentially toxic elements in urban parks from six European cities. J Environ Monit 8:1158–1165. doi:10.1039/B607980F

    CAS  PubMed  Google Scholar 

  • Maier R (2004) Phytostabilization of mine tailings in the southwestern United States: plant- soil-microbe interactions and metal speciation dynamics, superfund project. Superfund Basic Research Program, University of Arizona

    Google Scholar 

  • Martens SN, Boyd RS (2002) The defensive role of Ni hyperaccumulation by plants: a field experiment. Am J Bot 89:998–1003. doi:10.3732/ajb.89.6.998

    PubMed  Google Scholar 

  • Martley E, Gulson BL, Pfeifer HR (2004) Metal concentrations in soils around the copper smelter and surrounding industrial complex of Port Kembla, NSW, Australia. Sci Total Environ 325:113–127. doi:10.1016/j.scitotenv.2003.11.012

    CAS  PubMed  Google Scholar 

  • McCall J, Gunn J, Struik H (1995) Photo interpretive study of recovery of damaged lands near the metal smelters of Sudbury, Canada. Water Air Soil Pollut 85:847–852. doi:10.1007/BF00476935

    CAS  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Review. Curr Opin Plant Biol 3:153–162. doi:10.1016/S1369-5266(99)00054-0

    CAS  PubMed  Google Scholar 

  • Meers E, Lesage E, Lamsal S, Hopgood M, Vervaeke P, Tack FM, Verloo MG (2005) Enhanced phytoextraction: I. Effect of EDTA and citric acid on heavy metal mobility in a calcareous soil. Int J Phytoremediation 7:129–142. doi:10.1080/16226510590950423

    CAS  PubMed  Google Scholar 

  • Mejare M, Bulow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Review. Trends Biotechnol 19:67–73. doi:10.1016/S0167-7799(00)01534-1

    CAS  PubMed  Google Scholar 

  • Mench M, Bes C (2009) Assessment of ecotoxicity of topsoils from a wood treatment site. Pedosphere 19:143–155. doi:10.1016/S1002-0160(09)60104-1

    CAS  Google Scholar 

  • Mench M, Vangronsveld J, Lepp N, Bleeker P, Ruttens A, Geebelen W (2006) Phytostabilisation of metal-contaminated sites, Chapter 5. In: Morel JL et al (eds) Phytoremediation of metal-contaminated soils. Springer, Dordrecht, The Netherlands, pp 109–190

    Google Scholar 

  • Mench M, Lepp N, Bert V, Schwitzguébel JP, Gawronski SW, Schröder P, Vangronsveld J (2010) Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST Action 859. J Soils Sediments 10:1039–1070. doi:10.1007/s11368-010-0190-x

    CAS  Google Scholar 

  • Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Review. Environ Health Perspect 116:278–283. doi:10.1289/ehp.10608

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mesilio L, Farago ME, Thornton I (2003) Reconnaissance soil geochemical survey of Gibraltar. Environ Geochem Health 25:1–8. doi:10.1023/A:1021232412519

    CAS  PubMed  Google Scholar 

  • Milko S, Koch G, Mesić S, Šparica Miko M, Šparica M, Vreča P (2007) Influence of land use in small karst watersheds on the chemical status of peloid sediments on the eastern Adriatic coast. J Soils Sediments 7:303–312. doi:10.1065/jss2007.10.254

    Google Scholar 

  • Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645–653. doi:10.1016/j.biotechadv.2011.04.006

    CAS  PubMed  Google Scholar 

  • Mirlean N, Roisenberg A, Chies JO (2007) Metal contamination of vineyard soils in wet subtropics (southern Brazil). Environ Pollut 149:10–17. doi:10.1016/j.envpol.2006.12.024

    CAS  PubMed  Google Scholar 

  • Mirlean N, Baisch P, Medeanic S (2009) Copper bioavailability and fractionation in copper contaminated sandy soils in the wet subtropics (southern Brazil). Bull Environ Contam Toxicol 82:373–377. doi:10.1016/j.envpol.2006.12.024

    CAS  PubMed  Google Scholar 

  • Mleczek M, Mocek A, Magdziak Z, Gąsecka M, Mocek-Płóciniak A (2013) Impact of metal/metalloid-contaminated areas on plant growth. In: Gupta DK (ed) Plant-based remediation processes, vol 35, Soil biology. Springer, Berlin, pp 79–100

    Google Scholar 

  • Mocek A (2012) Fitoremediacja—metoda nadinterpretowana w zaleceniach do oczyszczania gleb z metali ciężkich. In: Ocena ryzyka zdrowotnego i ekologicznego na terenach rolniczych narażonych na oddziaływanie zanieczyszczeń chemicznych. IUNG—Puławy, pp 7–9. (in Polish)

    Google Scholar 

  • Mocek A, Owczarzak W, Bartoszewicz A (2001) Rational cultivation of chemically contaminated soils near the copper smelter. Acta Agrophys 56:189–198

    Google Scholar 

  • Morrell JJ, Hoffman J (2004) Copper, chromium, and arsenic levels in soils surrounding posts treated with chromated copper arsenate (CCA). Wood Fiber Sci 36:119–128

    CAS  Google Scholar 

  • Morton-Bermea O, Hernandez E, Martinez-Pichardo E, Soler-Arechalde AM, Santa-Cruz RL, Gonzalez-Hernandez G, Beramendi-Orosco L, Urrutia-Fucugauchi J (2009) Mexico city topsoils: heavy metals vs. magnetic susceptibility. Geoderma 151:121–125. doi:10.1016/j.geoderma.2009.03.019

    CAS  Google Scholar 

  • Mulligan CN, Cloutier RG (2003) Bioremediation of metal contamination. Environ Monit Assess 84:45–60. doi:10.1023/A:1022874727526

    CAS  PubMed  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207. doi:10.1016/S0013-7952(00)00101-0

    Google Scholar 

  • Nakajima H, Itoh K, Otake H, Fujimoto K (2011) Spectral properties of the Cu-hyperaccumulating moss Scopelophila cataractae. J Photochem Photobiol B 104:467–472. doi:10.1016/j.jphotobiol.2011.06.001

    CAS  PubMed  Google Scholar 

  • Naresh Kumar R, Nagendran R (2007) Influence of initial pH on bioleaching of heavy metals from contaminated soil employing indigenous Acidithiobacillus thiooxidans. Chemosphere 66:1775–1781. doi:10.1016/j.chemosphere.2006.07.091

    PubMed  Google Scholar 

  • Naresh Kumar R, Nagendran R (2009) Fractionation behavior of heavy metals in soil during bioleaching with Acidithiobacillus thiooxidans. J Hazard Mater 169:1119–1126. doi:10.1016/j.jhazmat.2009.04.069

    CAS  PubMed  Google Scholar 

  • Nedelkoska TV, Doran PM (2000) Characteristics of heavy metal uptake by plant species with potential for phytoremediation and phytomining. Miner Eng 13:549–561. doi:10.1016/S0892-6875(00)00035-2

    CAS  Google Scholar 

  • Nieminen TM, Ukonmaanaho L, Shotyk W (2002) Enrichment of Cu, Ni, Zn, Pb and As in an ombrotrophic peat bog near a Cu-Ni smelter in Southwest Finland. Sci Total Environ 292:81–89. doi:10.1016/S0048-9697(02)00028-1

    CAS  PubMed  Google Scholar 

  • Nikonov V, Goryainova V, Lukina N (2001) Ni and Cu migration and accumulation in forest ecosystems on the Kola Peninsula. Chemosphere 42:93–100. doi:10.1016/S0045-6535(00)00104-1

    CAS  PubMed  Google Scholar 

  • Ninkov J, Paprić D, Sekulić P, Zeremski-Škorić T, Milić S, Vasin J, Kurjački I (2012) Copper content of vineyard soils at Sremski Karlovci (Vojvodina Province, Serbia) as affected by the use of copper-based fungicides. Int J Environ Anal Chem 92:592–600. doi:10.1080/03067310903428743

    CAS  Google Scholar 

  • Nishikiori T, Okuyama A, Naganawa H, Takita T, Hamada H, Takeuchi T, Aoyagi T, Umezawa H (1984) Production by actinomycetes of (S, S)-N, N0-ethylenediamine–disuccinic acid, an inhibitor of phospholipase. J Antibiot 37:426–427

    CAS  PubMed  Google Scholar 

  • Nóvoa-Muñoz JC, Queijeiro JMG, Blanco-Ward D, Álvarez-Olleros C, Martínez-Cortizas A, García-Rodeja E (2007) Total copper content and its distribution in acid vineyards soils developed from granitic rocks. Sci Total Environ 378:23–27. doi:10.1016/j.scitotenv.2007.01.027

    PubMed  Google Scholar 

  • Nowack B, Rais D, Frey B, Menon M, Schulin R, Günthardt-Goerg MS, Luster J (2006) Influence of metal contamination on soil parameters in a lysimeter experiment designed to evaluate phytostabilization by afforestation. Forest Snow Landsc Res 80:201–211

    Google Scholar 

  • Odewande AA, Abimbola AF (2008) Contamination indices and heavy metal concentrations in urban soil of Ibadan metropolis, southwestern Nigeria. Environ Geochem Health 30:243–254. doi:10.1007/s10653-007-9112-2

    CAS  PubMed  Google Scholar 

  • Ordóñez A, Loredo J, DeMiguel E, Charlesworth S (2003) Distribution of heavy metals in the street dusts and soils of an industrial city in Northern Spain. Arch Environ Contam Toxicol 44:160–170. doi:10.1007/s00244-002-2005-6

    PubMed  Google Scholar 

  • Page MM, Page CL (2002) Electroremediation of contaminated soils. J Environ Eng 128:208–219. doi:10.1061/-ASCE!0733-9372-2002!128:3-208!

    CAS  Google Scholar 

  • Papoyan A, Kochian LV (2004) Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiol 136:3814–3823. doi:10.1104/pp. 104.044503

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pasieczna A, Małecka J, Lipnicka T (2003) Atlas of urban soils contamination in Poland. PIG, Warszawa

    Google Scholar 

  • Paton A, Brooks RR (1996) A re-evaluation of Haumaniastrum species as geobotanical indicators of copper and cobalt. J Geochem Explor 56:37–45. doi:10.1016/0375-6742(95)00048-8

    CAS  Google Scholar 

  • Pavlovic M (2011) A review of agribusiness copper use effects on environment. Bulg J Agric Sci 17:491–500

    Google Scholar 

  • Peer WA, Baxter IR, Richards EL, Freeman JL, Murphy AS (2005) Phytoremediation and hyperaccumulator plants. In: Tamás MJ, Martinoia E (eds) Molecular biology of metal homeostasis and detoxification. Springer, Berlin, pp 299–340

    Google Scholar 

  • Peters TH (1995) Revegetation of the copper cliff tailings area. In: Gunn J (ed) Restoration and recovery of an industrial region. Springer, New York, pp 123–133

    Google Scholar 

  • Pichtel J, Sawyerr HT, Czarnowska K (1997) Spatial and temporal distribution of metals in soils in Warsaw, Poland. Environ Pollut 98:169–174. doi:10.1016/S0269-7491(97)00131-0

    CAS  Google Scholar 

  • Pietrzak U, McPhail DC (2004) Copper accumulation, distribution and fractionation in vineyard soils of Victoria, Australia. Geoderma 122:151–166. doi:10.1016/j.geoderma.2004.01.005

    CAS  Google Scholar 

  • Pietrzak U, Uren NC (2011) Remedial options for copper-contaminated vineyard soils. Soil Res 49:44–55. doi:10.1071/SR09200

    CAS  Google Scholar 

  • Poschenrieder C, Tolrà R, Barceló J (2006) Can metals defend plants against biotic stress? Trends Plant Sci 11:288–295. doi:10.1016/j.tplants.2006.04.007

    CAS  PubMed  Google Scholar 

  • Prasad MNV (2003) Phytoremediation of metal-polluted ecosystems: hype for commercialization. Russ J Plant Physiol 50:686–701. doi:10.1023/A:1025604627496

    CAS  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29:529–540. doi:10.1016/S0160-4120(02)00152-6

    CAS  PubMed  Google Scholar 

  • Purvis OW, Pawlik-Skowrońska B, Cressey G, Jones GC, Kearsley A, Spratt J (2008) Mineral phases and element composition of the Cu hyperaccumulator lichen Lecanora polytropa. Mineral Mag 72:607–616. doi:10.1180/minmag.2008.072.2.607

    CAS  Google Scholar 

  • Quartacci MF, Irtelli B, Baker AJ, Navari-Izzo F (2007) The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata. Chemosphere 68:1920–1928. doi:10.1016/j.chemosphere.2007.02.058

    CAS  PubMed  Google Scholar 

  • Quinn ML (1991) The Appalachian Mountains’ Copper Basin and the concept of environmental susceptibility. Environ Manage 15:179–194. doi:10.1007/BF02393849

    Google Scholar 

  • Rajkumar M, Ae N, Prasad MN, Freitas H (2010) Potential of siderophore producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149. doi:10.1016/j.tibtech.2009.12.002

    CAS  PubMed  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181. doi:10.1016/j.plantsci.2010.08.016

    CAS  PubMed  Google Scholar 

  • Raskin I, Ensley BD (2000) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 15–31

    Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226. doi:10.1016/S0958-1669(97)80106-1

    CAS  PubMed  Google Scholar 

  • Rawlings DE, Johnson DB (eds) (2007) Biomining. Springer, Heidelberg

    Google Scholar 

  • Redente EF, Richards JL (1997) Effects of lime and fertilizer amendments on plant growth in smelter impacted soils in Montana. Arid Soil Res Rehabil 11:353–366. doi:10.1080/15324989709381488

    CAS  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York

    Google Scholar 

  • Reichman S (2002) The responses of plants to metal toxicity a review focusing on copper, manganese and zinc. Australian Minerals & Energy Environment Foundation, Melbourne

    Google Scholar 

  • Reijnders L (2003) Recovery of dissipated copper and the future of copper supply. Resour Conserv Recy 38:59–66. doi:10.1016/S0921-3449(02)00148-9

    Google Scholar 

  • Rimmer DL, Vizard CG, Pless-Mulloli T, Singleton I, Air VS, Keatinge ZA (2006) Metal contamination of urban soils in the vicinity of a municipal waste incinerator: one source among many. Sci Total Environ 356:207–216. doi:10.1016/j.scitotenv.2005.04.037

    CAS  PubMed  Google Scholar 

  • Rodríguez N, Menéndez N, Tornero J, Amils R, de la Fuente V (2005) Internal iron biomineralization in Imperata cylindrica, a perennial grass: chemical composition, speciation and plant localization. New Phytol 165:781–789. doi:10.1111/j.1469-8137.2004.01264.x

    PubMed  Google Scholar 

  • Romić M, Romić D, Dolanjski D, Stričević I (2004) Heavy metal accumulation in topsoils from the wine-growing regions. Part 1. Factors which control retention. Agric Conspec Sci 69:1–10

    Google Scholar 

  • Römkens P, Bouwman L, Japenga J, Draaisma C (2002) Potential and drawbacks of chelate-enhanced phytoremediation of soils. Environ Pollut 116:109–121. doi:10.1016/S0269-7491(01)00150-6

    PubMed  Google Scholar 

  • Roszyk E, Szerszeń L (1988) Accumulation of heavy metals in the arable layer of soils of the sanitary protection zone in the vicinity of copper metallurgic plants. Part 1: Legnica. Part 2: Głogów. Roczniki Gleboznawcze 39:135–141, 147–156. (in Polish)

    Google Scholar 

  • Ruby MV, Davis A, Nicholson A (1994) In situ formation of lead phosphates in soils as a method to immobilize lead. Environ Sci Technol 28:646–654. doi:10.1021/es00053a018

    CAS  PubMed  Google Scholar 

  • Rusjan D, Strlič M, Pucko D, Korošec-Koruza Z (2007) Copper accumulation regarding the soil characteristics in Sub-Mediterranean vineyards of Slovenia. Geoderma 141:111–118. doi:10.1016/j.geoderma.2007.05.007

    CAS  Google Scholar 

  • Ruttens A, Colpaert JV, Mench M, Boisson J, Carleer R, Vangronsveld J (2006) Phytostabilization of a metal contaminated sandy soil. II: Influence of compost and/or inorganic metal immobilizing soil amendments on metal leaching. Environ Pollut 144:533–539. doi:10.1016/j/envpol/2006.01.038

    CAS  PubMed  Google Scholar 

  • Sáinz A, Grande JA, De la Torre ML (2004) Characterisation of heavy metal discharge into the Ria of Huelva. Environ Int 30:557–566. doi:10.1016/j.envint.2003.10.013

    PubMed  Google Scholar 

  • Salomons W (1995) Environmental impacts of metals derived from mining activities: processes, prediction, prevention. J Geochem Explor 52:5–23. doi:10.1016/0375-6742(94)00039-E

    CAS  Google Scholar 

  • Salt DE, Prince RC, Pickering IJ (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433. doi:10.1104/pp. 109.4.1427

    PubMed Central  CAS  PubMed  Google Scholar 

  • Santibáñez C, Verdugo C, Ginocchio R (2008) Phytostabilization of copper mine tailings with biosolids: implications for metal uptake and productivity of Lolium perenne. Sci Total Environ 395:1–10. doi:10.1016/j.scitotenv.2007.12.033

    PubMed  Google Scholar 

  • Sas-Nowosielska A, Kucharski R, Pogrzeba M, Malkowski E (2008) Soil remediation scenarios for heavy metal contaminated soil. In: Soil chemical pollution, risk assessment, remediation and security. Springer, Dordrecht, The Netherlands, pp 301–307

    Google Scholar 

  • Sauvé S, Cook N, Hendershot WH, McBride MB (1996) Linking plant tissue concentrations and soil copper pools in urban contaminated soils. Environ Pollut 94:153–157. doi:10.1016/S0269-7491(96)00081-4

    PubMed  Google Scholar 

  • Schwab P, Zhu D, Banks MK (2007) Heavy metal leaching from mine tailings as affected by organic amendments. Bioresour Technol 98:2935–2941. doi:10.1016/j.biortech.2006.10.012

    CAS  PubMed  Google Scholar 

  • Seeley M, Wells CS, Wannamaker EJ, Mattuck RL, Ren S, Beck BD (2013) Determining soil remedial action criteria for acute effects: the challenge of copper. Regul Toxicol Pharmacol 65:47–59. doi:10.1016/j.yrtph.2012.10.011

    CAS  PubMed  Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2011) Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review. Crit Rev Environ Sci Technol 41:168–214. doi:10.1080/10643380902718418

    Google Scholar 

  • Shi W, Shao H, Li H, Shao M, Du S (2009) Progress in the remediation of hazardous heavy metal-polluted soils by natural zeolite. J Hazard Mater 170:1–6. doi:10.1016/j.jhazmat.2009.04.097

    CAS  PubMed  Google Scholar 

  • Smolińska B, Król K (2012) Leaching of mercury during phytoextraction assisted by EDTA, KI and citric acid. J Chem Technol Biotechnol 87:1360–1365. doi:10.1002/jctb.3826

    Google Scholar 

  • Soler-Rovira P, Madejón E, Madejón P, Plaza C (2010) In situ remediation of metal-contaminated soils with organic amendments: role of humic acids in copper bioavailability. Chemosphere 79:844–849. doi:10.1016/j.chemosphere.2010.02.054

    CAS  PubMed  Google Scholar 

  • Song J, Zhao FJ, Luo YM, McGrath SP, Zhang H (2004) Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils. Environ Pollut 128:307–315. doi:10.1016/j.envpol.2003.09.019

    CAS  PubMed  Google Scholar 

  • Spiak Z, Gediga K (2009) Usefulness of selected mineral wastes for reclamation of copper industry dumping site. Environ Protect Eng 35:79–88

    CAS  Google Scholar 

  • Spurgeon DJ, Hopkin SP (1996) The effects of metal contamination on earthworm populations around a smelting works: quantifying species effects. Appl Soil Ecol 4:147–160. doi:10.1016/0929-1393(96)00109-6

    Google Scholar 

  • Srivastava M, Ma LQ, Santos JAG (2006) Three new arsenic hyperaccumulating ferns. Sci Total Environ 364:24–31. doi:10.1016/j.scitotenv.2005.11.002

    CAS  PubMed  Google Scholar 

  • Stolarski M, Szczukowski S, Tworkowski J, Klasa A (2008) Productivity of seven clones of willow coppice in annual and quadrennial cutting cycles. Biomass Bioenergy 32:1227–1234. doi:10.1016/j.biombioe.2008.02.023

    Google Scholar 

  • Suèr P, Gitye K, Allard B (2003) Speciation and transport of heavy metals and macroelements during electroremediation. Environ Sci Technol 37:177–181. doi:10.1021/es010226h

    PubMed  Google Scholar 

  • Sun YB, Sun GH, Zhou QX, Xu YM, Wang L, Liang XF, Sun Y, Qing X (2011) Induced-phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with Marvel of Peru (Mirabilis jalapa L.). Plant Soil Environ 57:364–371

    CAS  Google Scholar 

  • Šyc M, Pohořelý M, Kameníková P, Habart J, Svoboda K, Punčochář M (2012) Willow trees from heavy metals phytoextraction as energy crops. Biomass Bioenergy 37:106–113. doi:10.1016/j.biombioe.2011.12.025

    Google Scholar 

  • Szerszeń L, Karczewska A, Roszyk E, Chodak T (1991) Rozmieszczenie Cu, Pb i Zn w profilach gleb przyległych do hut miedzi. Roczniki Gleboznawcze XLII 3–4:199–206 (in Polish)

    Google Scholar 

  • Szerszeń L, Chodak T, Karczewska A (1993) Areal, profile and time differentiation of heavy metal content in soils in the vicinity of copper smelters in LGOM, Poland. In: Eijsackers HJP, Hamers T (eds) Integrated soil and sediment research: a basis for proper protection. Kluwer, Dordrecht, The Netherlands, pp 279–281

    Google Scholar 

  • Szerszeń L, Chodak T, Kabała C (2004) Zmiany zawartości miedzi, ołowiu i cynku w glebach w rejonie hut miedzi Głogów i Legnica w latach 1972–2002. Roczniki Gleboznawcze 55:195–205 (in Polish)

    Google Scholar 

  • Tandy S, Schulin R, Nowack B (2006) Uptake of metals during chelant-assisted phytoextraction with EDDS related to the solubilized metal concentration. Environ Sci Technol 40:2753–2758

    CAS  PubMed  Google Scholar 

  • Tappero R, Peltier E, Gräfe M, Heindel K, Ginder-Vogel M, Livi KJT, Rivers ML, Marcus MA, Chaney RL, Sparks DL (2007) Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel. New Phytol 175:641–654. doi:10.1111/j.1469-8137.2007.02134.x

    CAS  PubMed  Google Scholar 

  • Terry N, Banuelos G (eds) (2000) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, FL

    Google Scholar 

  • Thornton I (1996) Impacts of mining on the environment; some local, regional and global issues. Appl Geochem 11:355–361. doi:10.1016/0883-2927(95)00064-X

    CAS  Google Scholar 

  • Townsend T, Solo-Gabriele H, Tolaymat T, Stook K, Hosein N (2003) Chromium, copper, and arsenic concentrations in soil underneath CCA-treated wood structures. Soil Sediment Contam 12:779–798. doi:10.1080/1058833031878528

    CAS  Google Scholar 

  • USGS (2013) U.S. Geological Survey, Mineral commodity summaries 2013. U.S. Geological Survey, 198 p

    Google Scholar 

  • Valix M, Usai F, Malik R (2001) Fungal bioleaching of low grade laterite ores. Miner Eng 14:197–203. doi:10.1016/S0892-6875(00)00175-8

    CAS  Google Scholar 

  • van Herwijen R, Hutchings TR, Al-Tabbaa A, Moffat AJ, Johns ML, Ouki SK (2007) Remediation of metal contaminated soil with mineral-amended composts. Environ Pollut 150:347–354. doi:10.1016/j.envpol.2007.01.023

    Google Scholar 

  • Van Nevel L, Mertens J, Oorts K, Verheyen K (2007) Phytoextraction of metals from soils: How far from practice? Environ Pollut 150: 34–40

    Google Scholar 

  • Vangronsveld J, Colpaert JV, Van Tichelen KK (1996) Reclamation of a bare industrial area contaminated by non-ferrous metals: physico-chemical and biological evaluation of the durability of soil treatment and revegetation. Environ Pollut 94:131–140. doi:10.1016/S0269-7491(96)00082-6

    CAS  PubMed  Google Scholar 

  • Verdugo C, Sánchez P, Santibáñez C, Urrestarazu P, Bustamante E, Silva Y, Gourdon D, Ginocchio R (2010) Efficacy of lime, biosolids, and mycorrhiza for the phytostabilization of sulfidic copper tailings in Chile: a greenhouse experiment. Int J Phytoremediation 13:107–125. doi:10.1080/15226510903535056

    Google Scholar 

  • Virkutyte J, Sillanpaa N, Latostenmaa P (2002) Electrokinetic soil remediation—critical overview. Sci Total Environ 289:97–121. doi:10.1016/S0048-9697(01)01027-0

    CAS  Google Scholar 

  • Voglar GE, Leštan D (2010) Solidification/stabilisation of metals contaminated industrial soil from former Zn smelter in Celje, Slovenia, using cement as a hydraulic binder. J Hazard Mater 178:926–933. doi:10.1016/j.jhazmat.2010.02.026

    CAS  PubMed  Google Scholar 

  • Volk TA, Abrahamson LP, Nowak CA, Smart LB, Tharakan PJ, White EH (2006) The development of short-rotation willow in the northeastern United States for bioenergy and bioproducts, agroforestry and phytoremediation. Biomass Bioenergy 30:715–727. doi:10.1016/j.biombioe.2006.03.001

    Google Scholar 

  • Wang H, Shan XQ, Wen B, Zhang S, Wang ZJ (2004) Responses of antioxidative enzymes to accumulation of copper in a copper hyperaccumulator of Commoelina communis. Arch Environ Contam Toxicol 47:185–192. doi:10.1007/s00244-004-2222-2

    CAS  PubMed  Google Scholar 

  • Wang F, Lin X, Yin R (2005) Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens and the potential for phytoremediation of contaminated soil. Plant Soil 269:225–232. doi:10.1007/s11104-004-0517-8

    CAS  Google Scholar 

  • Wang FY, Lin XG, Yin R (2007) Inoculation with arbuscular mycorrhizal fungus Acaulospora mellea decreases Cu phytoextraction by maize from Cu-contaminated soil. Pedobiologia 51:99–109. doi:10.1016/j.pedobi.2007.02.003

    CAS  Google Scholar 

  • Watling HR (2006) The bioleaching of sulphide minerals with emphasis on copper sulphides—a review. Hydrometallurgy 84:81–108. doi:10.1016/j.hydromet.2006.05.001

    CAS  Google Scholar 

  • Wei SH, Zhou QX, Wang X (2005) Cadmium-hyperaccumulator Solanum nigrum L. and its accumulating characteristics. Huan Jing Ke Xue 26:167–171

    CAS  PubMed  Google Scholar 

  • Wei C, Wang C, Yang L (2009) Characterizing spatial distribution and sources of heavy metals in the soils from mining-smelting activities in Shuikoushan, Hunan Province, China. J Environ Sci 21:1230–1236. doi:10.1016/S1001-0742(08)62409-2

    CAS  Google Scholar 

  • Wenger K, Gupta SK, Furrer G, Schulin R (2002) Zinc extraction potential of two common crop plants, Nicotiana tabacum and Zea mays. Plant Soil 242:217–225. doi:10.1023/A:1016253821174

    CAS  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408. doi:10.1007/s11104-008-9686-1

    CAS  Google Scholar 

  • Wenzel WW, Unterbrunner R, Sommer P, Pasqualina S (2003) Chelate-assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiments. Plant Soil 249:83–96. doi:10.1023/A:1022516929239

    CAS  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant–endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254. doi:10.1016/j.copbio.2009.02.012

    CAS  PubMed  Google Scholar 

  • Wightwick A, Mollah M, Smith J, MacGregor A (2006) Sampling considerations for surveying copper concentrations in Australian vineyard soils. Aust J Soil Res 44:711–717. doi:10.1071/SR05135

    CAS  Google Scholar 

  • Wightwick AM, Salzman SA, Reichman SM, Allinson G, Menzies NW (2013) Effects of copper fungicide residues on the microbial function of vineyard soils. Environ Sci Pollut Res 20:1574–1585. doi:10.1007/s11356-012-1114-7

  • Wilcke W, Müller S, Kanchanakool N, Zech W (1998) Urban soil contamination in Bangkok: heavy metal and aluminium partitioning in topsoils. Geoderma 86:211–228. doi:10.1016/S0016-7061(98)00045-7

    CAS  Google Scholar 

  • Wilson B, Pyatt FB (2007a) Heavy metal dispersion, persistence and bioaccumulation around an ancient copper mine situated in Anglesey, UK. Ecotoxicol Environ Saf 66:224–231. doi:10.1016/j.ecoenv.2006.02.015

    CAS  PubMed  Google Scholar 

  • Wilson B, Pyatt FB (2007b) Heavy metal bioaccumulation by the important food plant, Olea europaea l., in an ancient metalliferous polluted area of Cyprus. Bull Environ Contam Toxicol 78:390–394. doi:10.1007/s00128-007-9162-2

    CAS  PubMed  Google Scholar 

  • Wilson-Corral V, Anderson C, Rodriguez-Lopez M, Arenas-Vargas M, Lopez-Perez J (2011) Phytoextraction of gold and copper from mine tailings with Helianthus annuus L. and Kalanchoe serrata L. Miner Eng 24(13):1488–1494. doi:10.1016/j.mineng.2011.07.014

    CAS  Google Scholar 

  • Winterhalder K (1996) Environmental degradation and rehabilitation of the landscape around Sudbury, a major mining and smelting area. Environ Rev 4:185–224. doi:10.1139/a96-011

    CAS  Google Scholar 

  • Winterhalder K (1999) Landscape degradation by smelter emissions near Sudbury, Canada, and subsequent amelioration and restoration. In: Innes JL, Oleksyn J (eds) Forest dynamics in heavily polluted regions. IUFRO Task Force on Environmental Change 2000. Report No. 1, pp 87–119

    Google Scholar 

  • Winterhalder K (2000) Reclamation of smelter-damaged lands. Chapter 33. In: Barnhisel RI, Darmody RG, Daniels WL (eds) Reclamation of drastically disturbed lands, vol 41, Agronomy monograph. American Society of Agronomy, Madison, WI, pp 819–853

    Google Scholar 

  • Wong CS, Li X, Thornton I (2006) Urban environmental geochemistry of trace metals. Environ Pollut 142:1–16. doi:10.1016/j.envpol.2005.09.004

  • Wu J, Hsu F, Cunningham S (1999) Chelate-assisted Pb phytoextraction: Pb availability, uptake, and translocation constraints. Environ Sci Technol 33:1898–1904. doi:10.1021/es9809253

    CAS  Google Scholar 

  • Wu L, Li H, Luo YM, Christie P (2004) Nutrients can enhance phytoremediation of copper-polluted soil by Indian mustard. Environ Geochem Health 26:331–335. doi:10.1023/B:EGAH.0000039598.24033.4e

    CAS  PubMed  Google Scholar 

  • Yan S, Ling QC, Bao ZY (2007) Metals contamination in soils and vegetables in metal smelter contaminated sites in Huangshi, China. Bull Environ Contam Toxicol 79:361–366. doi:10.1007/s00128-007-9219-2

    CAS  PubMed  Google Scholar 

  • Yang SX, Deng H, Li MS (2008) Manganese uptake and accumulation in a woody hyperaccumulator, Schima superba. Plant Soil Environ 54(10):441–446

    CAS  Google Scholar 

  • Yruela I (2005) Copper in plants. Braz J Plant Physiol 17:145–156. doi:10.1590/S1677-04202005000100012

    CAS  Google Scholar 

  • Zagury GJ, Samson J, Deschênes L (2003) Occurrence of metals in soil and ground water near chromated copper arsenate-treated utility poles. J Environ Qual 32:507–514. doi:10.2134/jeq2003.5070

    CAS  PubMed  Google Scholar 

  • Zhang X-H, Liu J, Huang H-T, Chen J, Zhu Y-N, Wang D-Q (2007) Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz. Chemosphere 67:1138–1143. doi:10.1016/j.chemosphere.2006.11.0

    CAS  PubMed  Google Scholar 

  • Zhang G, Lin Y, Wang M (2011) Remediation of copper polluted red soils with clay materials. J Environ Sci 23:461–467. doi:10.1016/S1001-0742(10)60431-7

    CAS  Google Scholar 

  • Zheng YM, Chen TB, He JZ (2008) Multivariate geostatistical analysis of heavy metals in topsoils from Beijing, China. J Soils Sediments 8:51–58. doi:10.1065/jss2007.08.245

    CAS  Google Scholar 

  • Zhou DM, Deng CF, Cang L (2004) Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents. Chemosphere 56:265–273. doi:10.1016/j.chemosphere.2004.02.033

    CAS  PubMed  Google Scholar 

  • Zhu LY, Pilon-Smits EA, Jouanin L, Terry N (1999) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73–80. doi:10.1104/pp. 119.1.73

    CAS  Google Scholar 

  • Zou Z, Qiu R, Zhang W, Dong H, Zhao Z, Zhang T, Wei X, Cai X (2009) The study of operating variables in soil washing with EDTA. Environ Pollut 157:229–236. doi:10.1016/j.envpol.2008.07.009

    CAS  PubMed  Google Scholar 

  • Zwoździak J, Zwoździak A (1982) Trace metal behaviour in the vicinity of a copper smelter. Int J Environ Stud 1:35–41. doi:10.1080/00207238208709962

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support for this chapter by project grants N R12 0065 10, from the Polish Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirosław Mleczek Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Karczewska, A., Mocek, A., Goliński, P., Mleczek, M. (2015). Phytoremediation of Copper-Contaminated Soil. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-10969-5_12

Download citation

Publish with us

Policies and ethics