Skip to main content

Sustainable Land Use: Food Production or Fuels

  • Chapter
  • First Online:
Competition and Conflicts on Resource Use

Part of the book series: Natural Resource Management and Policy ((NRMP,volume 46))

  • 1857 Accesses

Abstract

Climate change and concerns of energy security are the main drivers for the promotion of renewable energy carriers. One of the main pillars of the strategy to mitigate climate change and save non-renewable energy carriers is the use of biomass for energy. Bioenergy can be obtained from wood and silvicultural residues, dedicated energy crops and agricultural residues as well as from organic waste. Already today, biomass is contributing about 15 % to the global energy consumption, however, most of it is traditional non-commercial firewood and charcoal for heating and cooking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Biomass means material of biological origin excluding material embedded in geological formations and transformed to fossil.

  2. 2.

    This chapter was compiled in march 2011.

References

  • Berndes G, Hoogwijk M, van den Broek R (2003) The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenergy 25(1):1–28

    Article  Google Scholar 

  • Braun J (2008) Rising food prices—What should be done? IFPRI Policy Brief, Washington, DC

    Google Scholar 

  • Bringezu S, Schütz H, Arnold K, Merten F, Kabasci S, Borelbach P, Michels C, Reinhardt GA, Rettenmaier N (2009) Global implications of biomass and biofuel use in Germany—Recent trends and future scenarios for domestic and foreign agricultural land use and resulting GHG emissions. J Clean Prod 17(S1):57–68

    Article  Google Scholar 

  • Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung, Factsheet (BMZ) (2008) Steigende Nahrungsmittelpreise und ihre entwicklungspolitischen Auswirkungen. BMZ Publikation, Bonn

    Google Scholar 

  • Dornburg V, van Vuuren D, van de Ven G, Langeveld H, Meeusen M, Banse M, van Oorschot M, Ros J, Jan van den Born G, Aiking H, Londo M, Mozaffarian H, Verweij P, Lysen E, Faaij A (2010) Bioenergy revisited: key factors in global potentials of bioenergy. Energy Environ Sci 3(3):258–267

    Article  Google Scholar 

  • Eickhout B, van Meijl H, Tabeau A, van Rheenen T (2007) Economic and ecological consequences of four European land use scenarios. Land Use Policy 24(3):562–575

    Article  Google Scholar 

  • EU (2003) Directive 2003/30/EC of the European Parliament and of the Council of 8 May 2003 on the promotion of the use of biofuels or other renewable fuels for transport

    Google Scholar 

  • EU (2009) European Commission, Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Official Journal of the European Union L 140/16, Brussels

    Google Scholar 

  • EU (2010) Report from the Comission on indirect land-use change related to biofuels and bioliquids. COM(2010) 811 final, Brussels, 22.12.2010

    Google Scholar 

  • FAO (1983) World food security: a reappraisal of the concepts and approaches. Director General’s Report, Rome

    Google Scholar 

  • FAO (2008) International commodity prices database. Food and Agricultural Organization, Rome

    Google Scholar 

  • Fehrenbach H, Giegrich J, Reinhardt G, Schmitz J, Sayer U, Gretz M, Seizinger E, Lanje K (2008) Criteria for a Sustainable Use of Bioenergy on a Global Scale. Environmental research of the federal ministry of the environment, nature conservation and nuclear safety, Research report 206 41 112, UBA-FB 001176/E, Federal Environment Agency (Umweltbundesamt), Dessau-Roßlau

    Google Scholar 

  • FNR (2010) Entwicklung dse Anbaus von Rohstoffpflanzen. Available at www.fnr.de. Accessed 3 Mar 2010

  • Fritsche et al (2010) BioGlobal—Entwicklung von Strategien und Nachhaltigkeitsstandards zur Zertifizierung von Biomasse für den internationalen Handel. Im Auftrag des Umweltbundesamts (UBA), FKZ 3707 93 100. Darmstadt/Heidelberg

    Google Scholar 

  • IPCC (2006) IPCC guidelines for national greenhouse gas inventories, vol 4. IGES, Japan

    Google Scholar 

  • Ley de Promoción y Desarrollo de los Bioenergéticos (LPDB) (2008) Diario Oficial de la 644 Federación, February, México

    Google Scholar 

  • Perrihan A-R, Dimaranan B, Laborde D (2010) Global trade and environmental impact study of the EU biofuels mandate. International Food Policy Institute (IFPRI), Washington, DC

    Google Scholar 

  • Reinhardt GA (1993) Energie- und CO2-Bilanzierung Nachwachsende Rohstoffe. Theoretische Grundlagen und Fallstudie Raps, G.A. Rheinhardt, Wiesbaden

    Google Scholar 

  • Renewable Fuels Agency (RFA) (2009) Carbon and sustainability reporting within the renewable transport fuel obligation—Technical Guidance Part Two—Default Values and Fuel Chains. Office of the Renewable Fuels Agency and UK Department of Transport, London

    Google Scholar 

  • Rettenmaier N, Schorb A, Köppen S et al (2010) Status of biomass resource assessments - Version 3. Deliverable D 3.6 within the BEE project (“Biomass Energy Europe”), supported by EC’s FP7 programme. IFEU, Heidelberg. http://www.eu-bee.eu/

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T-H (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–1240

    Article  Google Scholar 

  • Sheehan J (2009) Sustainable biofuels: a commonsense perspective on California’s approach to biofuels & global land use. Ind Biotechnol 5(2):93–103

    Article  Google Scholar 

  • Smeets EMW, Faaij APC, Lewandowski IM, Turkenburg WC (2007) A bottom-up assessment and review of global bio-energy potentials to 2050. Prog Energy Combust Sci 33(1):56–106

    Article  Google Scholar 

  • United Nations Environment Program (UNEP), Bringezu S, Schütz H,O’Brien M, Kauppi L,Howarth RW, McNeely J (2009) Towards sustainable production and use of resources. Assessing Biofuels, Paris, pp. 63, 75

    Google Scholar 

  • US Congress (2007) Energy independence and security act of 2007. Public Law 110–140, Washington, DC

    Google Scholar 

  • Zuurbier P, van de Vooren J (eds) (2008) Sugarcane ethanol - contributions to climate change mitigation and the environment. Wageningen Academic Publishers, Wagenningen

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Hennecke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hennecke, A., Rettenmaier, N. (2015). Sustainable Land Use: Food Production or Fuels. In: Hartard, S., Liebert, W. (eds) Competition and Conflicts on Resource Use. Natural Resource Management and Policy, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-10954-1_17

Download citation

Publish with us

Policies and ethics