Skip to main content

Self-gravitating Bose-Einstein Condensates

  • Chapter
  • First Online:
Quantum Aspects of Black Holes

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 178))

Abstract

Bose-Einstein condensates play a major role in condensed matter physics. Recently, it has been suggested that they could play an important role in astrophysics also. Indeed, dark matter halos could be gigantic quantum objects made of Bose-Einstein condensates. The pressure arising from the Heisenberg uncertainty principle or from the repulsive scattering of the bosons could stabilize dark matter halos against gravitational collapse and lead to smooth core densities instead of cuspy density profiles in agreement with observations. In order to reproduce the scales of dark matter halos, the mass of the bosons may range from \(10^{-24}\, \mathrm{eV/c^2}\) to a few \(\mathrm{eV/c^2}\) depending whether they interact or not. At the scale of galaxies, Newtonian gravity can be used so the evolution of the wave function is governed by the Gross-Pitaevskii-Poisson system. Self-gravitating Bose-Einstein condensates have also been proposed to describe boson stars. For these compact objects, one must use general relativity and couple the Klein-Gordon equation to the Einstein field equations. In that context, it has been proposed that neutron stars could be Bose-Einstein condensate stars due to their superfluid core. Indeed, the neutrons could form Cooper pairs and behave as bosons. In that case, the maximum mass of the neutron stars depends on the scattering length of the bosons and can be as large as \(2M_{\odot }\). This could explain recent observations of neutron stars with a mass much larger than the Oppenheimer-Volkoff limit of \(0.7M_{\odot }\) obtained by assuming that neutron stars are ideal fermion stars. Self-gravitating Bose-Einstein condensates may also find applications in the physics of black holes. For example, when the scattering length of the bosons is negative, a Newtonian self-gravitating Bose-Einstein condensate becomes unstable above a critical mass and undergoes a gravitational collapse leading ultimately to a singularity. On the other hand, stable boson stars with a positive scattering length could mimic supermassive black holes that reside at the center of galaxies. Finally, it has been proposed that microscopic quantum black holes could be Bose-Einstein condensates of gravitons. This contribution discusses fundamental aspects of the physics of self-gravitating Bose-Einstein condensates and considers recent applications in astrophysics, cosmology and black hole physics with promising perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The condensation of the bosons takes place when their thermal (de Broglie) wavelength \(\lambda _{T}=(2\pi \hbar ^2/mk_BT)^{1/2}\) exceeds their mean separation \(l=n^{-1/3}\) (\(n\) is the number density of the bosons). This leads to the inequality \(n\lambda _{T}^{3}>1 \) or \(T<T_c\) where \(T_c= 2\pi \hbar ^2 n^{2/3}/m k_B\) is the critical condensation temperature (up to a numerical proportionality factor).

  2. 2.

    Using Eq. (51) of [16] obtained with the Gaussian ansatz, we find that \(E_{tot}>0\) when \(M<(\sqrt{3}/2)M_{\max }\) and \(R<R_*/\sqrt{3}\).

  3. 3.

    In the semi-classical limit, the radiation of a black hole may be obtained from the Stefan-Boltzmann law \(\dot{M} c^2\sim -A \sigma T^4\sim -\hbar c^6/G^2M^2\) where \(\sigma \sim k_B^4/c^2\hbar ^3\) is the black body constant and \(A\sim R^2\) the black hole area. Using the scalings (6.86), this equation may be rewritten as \(\dot{N}\sim -1/(t_P\sqrt{N})\) where \(t_P=(\hbar G/c^5)^{1/2}=5.39\times 10^{-44}\,\mathrm{s}\) is the Planck time. After integration, we obtain the scaling of the evaporation time of a black hole \(\tau \sim M^3G^2/\hbar c^4\sim N^{3/2}t_P\).

  4. 4.

    Using \(E\sim M c^2\sim \hbar c^5/Gk_B T\), we get \(C=dE/dT\sim -\hbar c^5/Gk_B T^2<0\) so that the temperature increases as the black hole loses mass and energy.

References

  1. Binney, J., Tremaine, S.: Galactic Dynamics. Princeton University Press, Princeton (1987)

    MATH  Google Scholar 

  2. Copeland, E.J., Sami, M., Tsujikawa, S.: Int. J. Mod. Phys. D 15, 1753 (2006)

    ADS  Google Scholar 

  3. Persic, M., Salucci, P., Stel, F.: Mon. Not. R. Astron. Soc. 281, 27 (1996)

    ADS  Google Scholar 

  4. Overduin, J.M., Wesson, P.S.: Phys. Rep. 402, 267 (2004)

    ADS  MathSciNet  Google Scholar 

  5. Peebles, P.J.E., Ratra, B.: Rev. Mod. Phys. 75, 559 (2003)

    ADS  Google Scholar 

  6. Navarro, J.F., Frenk, C.S., White, S.D.M.: Mon. Not. R. Astron. Soc. 462, 563 (1996)

    ADS  Google Scholar 

  7. Burkert, A.: Astrophys. J. 447, L25 (1995)

    ADS  Google Scholar 

  8. Kauffmann, G., White, S.D.M., Guiderdoni, B.: Mon. Not. R. Astron. Soc. 264, 201 (1993)

    ADS  Google Scholar 

  9. Pethick, C.J., Smith, H.: Bose-Einstein Condensation in Dilute Gases. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  10. Madelung, E.: Zeit. F. Phys. 40, 322 (1927)

    ADS  Google Scholar 

  11. Gross, E.P.: Ann. Phys. 4, 57 (1958)

    Google Scholar 

  12. Gross, E.P.: Nuovo Cimento 20, 454 (1961)

    Google Scholar 

  13. Gross, E.P.: J. Math. Phys. 4, 195 (1963)

    Google Scholar 

  14. Pitaevskii, L.P.: Sov. Phys. JETP 9, 830 (1959); ibid 13, 451 (1961)

    Google Scholar 

  15. Chavanis, P.H.: Phys. Rev. D 84, 043531 (2011)

    ADS  Google Scholar 

  16. Chavanis, P.H., Delfini, L.: Phys. Rev. D 84, 043532 (2011)

    ADS  Google Scholar 

  17. Baldeschi, M.R., Gelmini, G.B., Ruffini, R.: Phys. Lett. B 122, 221 (1983)

    ADS  Google Scholar 

  18. Membrado, M., Pacheco, A.F., Sanudo, J.: Phys. Rev. A 39, 4207 (1989)

    ADS  Google Scholar 

  19. Sin, S.J.: Phys. Rev. D 50, 3650 (1994)

    ADS  Google Scholar 

  20. Schunck, F.E.: astro-ph/9802258

  21. Matos, T., Guzmán, F.S.: Astron. F. Nachr. 320, 97 (1999)

    Google Scholar 

  22. Guzmán, F.S., Matos, T.: Class. Quantum Gravity 17, L9 (2000)

    ADS  Google Scholar 

  23. Hu, W., Barkana, R., Gruzinov, A.: Phys. Rev. Lett. 85, 1158 (2000)

    ADS  Google Scholar 

  24. Matos, T., Ureña-López, L.A.: Phys. Rev. D 63, 063506 (2001)

    ADS  Google Scholar 

  25. Arbey, A., Lesgourgues, J., Salati, P.: Phys. Rev. D 64, 123528 (2001)

    ADS  Google Scholar 

  26. Silverman, M.P., Mallett, R.L.: Class. Quantum Gravity 18, L103 (2001)

    ADS  Google Scholar 

  27. Alcubierre, M., Guzmán, F.S., Matos, T., Núñez, D., Ureña-López, L.A., Wiederhold, P.: Class. Quantum. Gravity 19, 5017 (2002)

    ADS  Google Scholar 

  28. Silverman, M.P., Mallett, R.L.: Gen. Relativ. Gravit. 34, 633 (2002)

    Google Scholar 

  29. Bernal, A., Matos, T., Núñez, D.: Rev. Mex. Astron. Astrofis. 44, 149 (2008)

    ADS  Google Scholar 

  30. Sikivie, P., Yang, Q.: Phys. Rev. Lett. 103, 111301 (2009)

    ADS  Google Scholar 

  31. Matos, T., Vazquez-Gonzalez, A., Magana, J.: Mon. Not. R. Astron. Soc. 393, 1359 (2009)

    ADS  Google Scholar 

  32. Lee, J.W.: Phys. Lett. B 681, 118 (2009)

    ADS  Google Scholar 

  33. Lee, J.W., Lim, S.: J. Cosmol. Astropart. Phys. 01, 007 (2010)

    ADS  Google Scholar 

  34. Manfredi, G., Hervieux, P.A., Haas, F.: Class. Quantum Gravity 30, 075006 (2013)

    ADS  Google Scholar 

  35. Lee, J.W., Koh, I.: Phys. Rev. D 53, 2236 (1996)

    ADS  Google Scholar 

  36. Peebles, P.J.E.: Astrophys. J. 534, L127 (2000)

    ADS  Google Scholar 

  37. Goodman, J.: New Astron. 5, 103 (2000)

    ADS  Google Scholar 

  38. Lesgourgues, J., Arbey, A., Salati, P.: New Astron. Rev. 46, 791 (2002)

    ADS  Google Scholar 

  39. Arbey, A., Lesgourgues, J., Salati, P.: Phys. Rev. D 68, 023511 (2003)

    ADS  Google Scholar 

  40. Böhmer, C.G., Harko, T.: J. Cosmol. Astropart. Phys. 06, 025 (2007)

    ADS  Google Scholar 

  41. Briscese, F.: Phys. Lett. B 696, 315 (2011)

    ADS  Google Scholar 

  42. Harko, T.: J. Cosmol. Astropart. Phys. 05, 022 (2011)

    ADS  Google Scholar 

  43. Pires, M.O.C., de Souza, J.C.C.: J. Cosmol. Astropart. Phys. 11, 024 (2012)

    ADS  Google Scholar 

  44. Robles, V.H., Matos, T.: Mon. Not. R. Astron. Soc. 422, 282 (2012)

    ADS  Google Scholar 

  45. Rindler-Daller, T., Shapiro, P.R.: Mon. Not. R. Astron. Soc. 422, 135 (2012)

    ADS  Google Scholar 

  46. Lora, V., Magaña, J., Bernal, A., Sánchez-Salcedo, F.J., Grebel, E.K.: J. Cosmol. Astropart. Phys. 02, 011 (2012)

    ADS  Google Scholar 

  47. González-Morales, A.X., Diez-Tejedor, A., Ureña-López, L.A., Valenzuela, O.: Phys. Rev. D 87, 021301(R) (2013)

    ADS  Google Scholar 

  48. Guzmán, F.S., Lora-Clavijo, F.D., González-Avilés, J.J., Rivera-Paleo, F.J.: J. Cosmol. Astropart. Phys. 09, 034 (2013)

    ADS  Google Scholar 

  49. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Rev. Mod. Phys. 71, 463 (1999)

    ADS  Google Scholar 

  50. Chavanis, P.H.: Astron. Astrophys. 537, A127 (2012)

    ADS  Google Scholar 

  51. Kaup, D.J.: Phys. Rev. 172, 1331 (1968)

    ADS  Google Scholar 

  52. Ruffini, R., Bonazzola, S.: Phys. Rev. 187, 1767 (1969)

    ADS  Google Scholar 

  53. Thirring, W.: Phys. Lett. B 127, 27 (1983)

    ADS  Google Scholar 

  54. Breit, J.D., Gupta, S., Zaks, A.: Phys. Lett. B 140, 329 (1984)

    ADS  Google Scholar 

  55. Takasugi, E., Yoshimura, M.: Z. Phys. C 26, 241 (1984)

    Google Scholar 

  56. Colpi, M., Shapiro, S.L., Wasserman, I.: Phys. Rev. Lett. 57, 2485 (1986)

    ADS  MathSciNet  Google Scholar 

  57. van der Bij, J.J., Gleiser, M.: Phys. Lett. B 194, 482 (1987)

    ADS  Google Scholar 

  58. Gleiser, M.: Phys. Rev. D 38, 2376 (1988)

    ADS  Google Scholar 

  59. Gleiser, M., Watkins, R.: Nucl. Phys. B 319, 733 (1989)

    ADS  Google Scholar 

  60. Seidel, E., Suen, W.M.: Phys. Rev. D 42, 384 (1990)

    ADS  Google Scholar 

  61. Kusmartsev, F.V., Mielke, E.W., Schunck, F.E.: Phys. Lett. A 157, 465 (1991)

    ADS  MathSciNet  Google Scholar 

  62. Kusmartsev, F.V., Mielke, E.W., Schunck, F.E.: Phys. Rev. D 43, 3895 (1991)

    ADS  MathSciNet  Google Scholar 

  63. Lee, T.D., Pang, Y.: Phys. Rep. 221, 251 (1992)

    ADS  MathSciNet  Google Scholar 

  64. Jetzer, P.: Phys. Rep. 220, 163 (1992)

    ADS  Google Scholar 

  65. Seidel, E., Suen, W.M.: Phys. Rev. Lett. 72, 2516 (1994)

    ADS  Google Scholar 

  66. Balakrishna, J., Seidel, E., Suen, W.M.: Phys. Rev. D 58, 104004 (1998)

    ADS  Google Scholar 

  67. Schunck, F.E., Liddle, A.R.: Black holes: theory and observation. In: Hehl, F.W., Kiefer, C., Metzler, R.J.K. (eds.) Proceedings of the 179th W.E. Heraeus Seminar, p. 285. Springer (1998)

    Google Scholar 

  68. Mielke, E.W., Schunck, F.E.: Nucl. Phys. B 564, 185 (2000)

    ADS  Google Scholar 

  69. Torres, D.F., Capozziello, S., Lambiase, G.: Phys. Rev. D 62, 104012 (2000)

    ADS  Google Scholar 

  70. Wang, X.Z.: Phys. Rev. D 64, 124009 (2001)

    ADS  Google Scholar 

  71. Schunck, F.E., Mielke, E.W.: Class. Quantum Gravity 20, R301 (2003)

    ADS  Google Scholar 

  72. Guzmán, F.S.: Phys. Rev. D 73, 021501 (2006)

    ADS  Google Scholar 

  73. Chavanis, P.H., Harko, T.: Phys. Rev. D 86, 064011 (2012)

    ADS  Google Scholar 

  74. Oppenheimer, J.R., Volkoff, G.M.: Phys. Rev. 55, 374 (1939)

    ADS  Google Scholar 

  75. Dvali, G., Gomez, C.: Fortschr. Phys. 61, 742 (2013)

    MathSciNet  Google Scholar 

  76. Casadio, R., Orlandi, A.: J. High Energy Phys. 8, 25 (2013)

    ADS  Google Scholar 

  77. Bohm, D.: Phys. Rev. 85, 166 (1952)

    ADS  MathSciNet  Google Scholar 

  78. Chandrasekhar, S.: An Introduction to the Study of Stellar Structure. Dover, Mineola, New York (1958)

    MATH  Google Scholar 

  79. von Weizsäcker, C.F.: Z. Phys. 96, 431 (1935)

    ADS  Google Scholar 

  80. Fisher, R.A.: Proc. Cambridge Philos. Soc. 22, 700 (1925)

    ADS  Google Scholar 

  81. Holm, D., Marsden, J., Ratiu, T., Weinstein, A.: Phys. Rep. 123, 1 (1985)

    ADS  Google Scholar 

  82. Chavanis, P.H.: Phys. Rev. E 84, 031101 (2011)

    ADS  Google Scholar 

  83. Sulem, C., Sulem, P.L.: The Nonlinear Schrödinger Equation. Springer, Berlin (1999)

    MATH  Google Scholar 

  84. Ledoux, P., Pekeris, C.L.: Astrophys. J. 94, 124 (1941)

    ADS  Google Scholar 

  85. Hawking, S.: Nature 248, 30 (1974)

    ADS  Google Scholar 

  86. Lee, T.D.: Phys. Rev. D 35, 3637 (1987)

    ADS  Google Scholar 

  87. Torres, D.F.: Nucl. Phys. B 26, 377 (2002)

    ADS  Google Scholar 

  88. Misner, C.W., Zapolsky, H.S.: Phys. Rev. Lett. 12, 635 (1964)

    ADS  Google Scholar 

  89. Harrison, B.K., Thorne, K.S., Wakano, M., Wheeler, J.A.: Gravitation Theory and Gravitational Collapse. University of Chicago Press, Chicago (1965)

    Google Scholar 

  90. Chavanis, P.H.: Astron. Astrophys. 381, 709 (2002)

    ADS  Google Scholar 

  91. Li, X.Y., Harko, T., Cheng, K.S.: J. Cosmol. Astropart. Phys. 06, 001 (2012)

    ADS  Google Scholar 

  92. Li, X.Y., Wang, F.Y., Cheng, K.S.: J. Cosmol. Astropart. Phys. 10, 031 (2012)

    ADS  Google Scholar 

  93. Bekenstein, J.D.: Phys. Rev. D 7, 2333 (1973)

    ADS  MathSciNet  Google Scholar 

  94. Dvali, G., Gomez, C., Mukhanov, S.: arXiv:1106.5894

  95. Hawking, S.: Commun. Math. Phys. 43, 199 (1975)

    Google Scholar 

  96. Dvali, G., Gomez, C., Mukhanov, S.: J. High Energy Phys. 2, 12 (2011)

    Google Scholar 

  97. Khlopov, M.Y., Malomed, B.A., Zeldovich, Y.B.: Mon. Not. R. Astron. Soc. 215, 575 (1985)

    Google Scholar 

  98. Bianchi, M., Grasso, D., Ruffini, R.: Astron. Astrophys. 231, 301 (1990)

    ADS  Google Scholar 

  99. Kobayashi, Y., Kasai, M., Futamase, T.: Phys. Rev. D 50, 7721 (1994)

    ADS  Google Scholar 

  100. Yoshida, S., Eriguchi, Y.: Phys. Rev. D 56, 762 (1997)

    ADS  MathSciNet  Google Scholar 

  101. Schunck, F.E., Mielke, E.W.: Phys. Lett. A 249, 389 (1998)

    ADS  Google Scholar 

  102. Kain, B., Ling, H.Y.: Phys. Rev. D 82, 064042 (2010)

    ADS  Google Scholar 

  103. Guzmán, F.S., Lora-Clavijo, F.D., González-Avilés, J.J., Rivera-Paleo, F.J.: arXiv:1310.3909

  104. Bernal, A., Guzmán, F.S.: Phys. Rev. D 74, 103002 (2006)

    ADS  Google Scholar 

  105. Lee, J.W., Lim, S., Choi, D.: arXiv:0805.3827

  106. González, J.A., Guzmán, F.S.: Phys. Rev. D 83, 103513 (2011)

    ADS  Google Scholar 

  107. Guzmán, F.S., Ureña-López, L.A.: Phys. Rev. D 645, 814 (2006)

    Google Scholar 

  108. Fukuyama, T., Morikawa, M., Tatekawa, T.: J. Cosmol. Astropart. Phys. 06, 033 (2008)

    ADS  Google Scholar 

  109. Fukuyama, T., Morikawa, M.: Phys. Rev. D 80, 063520 (2009)

    ADS  Google Scholar 

  110. Harko, T.: Mon. Not. R. Astron. Soc. 413, 3095 (2011)

    ADS  Google Scholar 

  111. Chavanis, P.H.: Phys. Rev. D 84, 063518 (2011)

    ADS  Google Scholar 

  112. Harko, T.: Phys. Rev. D 83, 123515 (2011)

    ADS  Google Scholar 

  113. Bettoni, D., Liberati, S., Sindoni, L.: J. Cosmol. Astropart. Phys. 11, 007 (2011)

    ADS  Google Scholar 

  114. Magaña, J., Matos, T., Suárez, A., Sánchez-Salcedo, F.J.: J. Cosmol. Astropart. Phys. 10, 003 (2012)

    ADS  Google Scholar 

  115. Park, C.G., Hwang, J.C., Noh, H.: Phys. Rev. D 86, 083535 (2012)

    ADS  Google Scholar 

  116. Harko, T., Mocanu, G.: Phys. Rev. D 85, 084012 (2012)

    ADS  Google Scholar 

  117. Velten, H., Wamba, E.: Phys. Lett. B 709, 1 (2012)

    ADS  Google Scholar 

  118. Kain, B., Ling, H.Y.: Phys. Rev. D 85, 023527 (2012)

    ADS  Google Scholar 

  119. Li, B., Rindler-Daller, T., Shapiro, P.R.: arXiv:1310.6061

  120. Ingrosso, G., Ruffini, R.: Nuovo Cimento 101, 369 (1988)

    Google Scholar 

  121. Ingrosso, G., Merafina, M., Ruffini, R.: Nuovo Cimento 105, 977 (1990)

    Google Scholar 

  122. Bilic, N., Nikolic, H.: Nucl. Phys. B 590, 575 (2000)

    ADS  Google Scholar 

  123. Matos, T., Suárez, A.: Europhys. Lett. 96, 56005 (2011)

    ADS  Google Scholar 

  124. Harko, T., Madarassy, E.: J. Cosmol. Astropart. Phys. 01, 020 (2012)

    ADS  Google Scholar 

  125. Slepian, Z., Goodman, J.: Mon. Not. R. Astron. Soc. 427, 839 (2012)

    ADS  Google Scholar 

  126. Robles, V.H., Matos, T.: Astrophys. J. 763, 19 (2013)

    ADS  Google Scholar 

  127. Liddle, A.R., Madsen, M.S.: Int. J. Mod. Phys. D 1, 101 (1992)

    ADS  Google Scholar 

  128. Guzmán, F.S.: J. Phys.: Conf. Series 91, 012003 (2007)

    Google Scholar 

  129. Lee, J.W.: Korean Phys. Soc. 54, 2622 (2009)

    ADS  Google Scholar 

  130. Liebling, S.L., Palenzuela, C.: Living Rev. Relativ. 15, 6 (2012)

    ADS  Google Scholar 

  131. Magaña, J., Matos, T.: J. Phys.: Conf. Series 378, 012012 (2012)

    Google Scholar 

  132. Magaña, J., Matos, T., Robles, V., Suárez, A.: arXiv:1201.6107

  133. Rindler-Daller, T., Shapiro, P.R.: arXiv:1209.1835

  134. Suárez, A., Robles, V.H., Matos, T.: arXiv:1302.0903

  135. Dwornik, M., Keresztes, Z., Gergely L.A.: arXiv:1312.3715

  136. Rindler-Daller, T., Shapiro, P.R.: Mod. Phys. Lett. A 29, 1430002 (2014)

    ADS  Google Scholar 

  137. Chavanis, P.H.: Int. J. Mod. Phys. B 20, 3113 (2006)

    ADS  Google Scholar 

  138. Fabbri, R., Jantzen, R., Ruffini, R.: Astron. Astrophys. 114, 219 (1982)

    ADS  Google Scholar 

  139. Ruffini, R., Stella, L.: Astron. Astrophys. 119, 35 (1983)

    ADS  Google Scholar 

  140. Gao, J.G., Merafina, M., Ruffini, R.: Astron. Astrophys. 235, 1 (1990)

    ADS  Google Scholar 

  141. Bilic, N., Viollier, R.D.: Phys. Lett. B 408, 75 (1997)

    ADS  Google Scholar 

  142. Bilic, N., Viollier, R.D.: Eur. Phys. J. C 11, 173 (1999)

    ADS  Google Scholar 

  143. Bilic, N., Lindebaum, R.J., Tupper, G.B., Viollier, R.D.: Phys. Lett. B 515, 105 (2001)

    ADS  Google Scholar 

  144. Bilic, N., Tupper, G.B., Viollier, R.D.: Lect. Notes Phys. 616, 24 (2003)

    ADS  Google Scholar 

  145. Lynden-Bell, D.: Mon. Not. R. Astron. Soc. 136, 101 (1967)

    ADS  Google Scholar 

  146. Kull, A., Treumann, R.A., Böhringer, H.: Astrophys. J. 466, L1 (1996)

    ADS  Google Scholar 

  147. Chavanis, P.H., Sommeria, J.: Mon. Not. R. Astron. Soc. 296, 569 (1998)

    ADS  Google Scholar 

  148. Chavanis, P.H.: Astron. Astrophys. 381, 340 (2002)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Henri Chavanis .

Editor information

Editors and Affiliations

Appendices

Appendix

6.7 Self-interaction Constant

We define the self-interaction constant by [15]:

$$\begin{aligned} \frac{\lambda }{8\pi }\equiv \frac{a}{\lambda _c}=\frac{a m c}{\hbar }, \end{aligned}$$
(6.87)

where \(\lambda _c=\hbar /mc\) is the Compton wavelength of the bosons. This is a dimensionless parameter measuring the strength of the short-range interactions. It can be written as

$$\begin{aligned} \frac{\lambda }{8\pi }=5.07\, \frac{a}{1\,\mathrm{fm}}\frac{m}{1 \,\mathrm{GeV}/c^2}. \end{aligned}$$
(6.88)

Using this expression, we can express the results in terms of \(\lambda \) and \(m\) instead of \(a\) and \(m\).

6.8 Conservation of Energy

The total energy associated with the quantum Euler-Poisson system (6.14)–(6.16) is given by Eq. (6.37). According to Eq. (6.38), we have

$$\begin{aligned} \delta \Theta _c=\int \frac{\mathbf{u}^2}{2}\delta \rho \, d\mathbf{r}+\int \rho \mathbf{u}\cdot \delta \mathbf{u}\, d\mathbf{r}. \end{aligned}$$
(6.89)

On the other hand, using Eqs. (6.10) and (6.39), we find that

$$\begin{aligned} \delta \Theta _Q&= \frac{\hbar ^2}{m^2}\int \nabla \sqrt{\rho }\cdot \delta \nabla \sqrt{\rho }\, d\mathbf{r} =\frac{\hbar ^2}{m^2}\int \nabla \sqrt{\rho }\cdot \nabla \left( \frac{1}{2\sqrt{\rho }}\delta \rho \right) \, d\mathbf{r}\nonumber \\&=-\frac{\hbar ^2}{2 m^2}\int \frac{\varDelta \sqrt{\rho }}{\sqrt{\rho }}\delta \rho \, d\mathbf{r}=\frac{1}{m}\int Q \delta \rho \, d\mathbf{r}. \end{aligned}$$
(6.90)

Finally, according to Eqs. (6.40) and (6.41), we have

$$\begin{aligned} \delta U=\frac{4\pi a\hbar ^2}{m^3}\int \rho \delta \rho \, d\mathbf{r},\quad \delta W=\int \varPhi \delta \rho \, d\mathbf{r}. \end{aligned}$$
(6.91)

Taking the time derivative of the total energy \(E_{tot}\) and using the previous relations, we get

$$\begin{aligned} \dot{E}_{tot}=\int \left( \frac{\mathbf{u}^2}{2}+\frac{Q}{m}+\frac{4\pi a\hbar ^2}{m^3}\rho +\varPhi \right) \frac{\partial \rho }{\partial t}\, d\mathbf{r}+\int \rho \mathbf{u}\cdot \frac{\partial \mathbf{u}}{\partial t}\, d\mathbf{r}. \end{aligned}$$
(6.92)

Using the equation of continuity (6.14), integrating by parts, using the Euler equation (6.15) and the identity \((\mathbf{u}\cdot \nabla )\mathbf{u}=\nabla \left( {\mathbf{u}^2}/{2}\right) -\mathbf{u}\times (\nabla \times \mathbf{u})\), we obtain after simplification

$$\begin{aligned} \dot{E}_{tot}=\int \rho \mathbf{u}\cdot \left( \mathbf{u}\times (\nabla \times \mathbf{u})\right) \, d\mathbf{r}. \end{aligned}$$
(6.93)

Since \(\mathbf{u}\) is a potential flow, we have \(\nabla \times \mathbf{u}=\mathbf{0}\) yielding \(\dot{E}_{tot}=0\). Actually, we note that this result remains valid even if \(\mathbf{u}\) is not a potential flow since \(\mathbf{u}\cdot (\mathbf{u}\times (\nabla \times \mathbf{u}))=0\).

6.9 Virial Theorem

In this Appendix, we establish the time-dependent tensorial Virial theorem associated with the quantum Euler-Poisson system (6.14)–(6.16).

Taking the time derivative of the moment of inertia tensor \(I_{ij}=\int \rho x_i x_j \, d\mathbf{r}\) and using the equation of continuity (6.14), we obtain after an integration by parts

$$\begin{aligned} \dot{I}_{ij}=\int \rho (x_i u_j+x_j u_i)\, d\mathbf{r}. \end{aligned}$$
(6.94)

Taking the time derivative of Eq. (6.94), we get

$$\begin{aligned} \ddot{I}_{ij}=\int x_i \frac{\partial }{\partial t}(\rho u_j) \, d\mathbf{r} + (i\leftrightarrow j), \end{aligned}$$
(6.95)

where \(\partial _t(\rho u_j)\) is given by Eq. (6.13). We need to evaluate four terms. The first term is

$$\begin{aligned} -\int x_i \partial _k(\rho u_j u_k) \, d\mathbf{r} =\int \rho u_i u_j\, d\mathbf{r}. \end{aligned}$$
(6.96)

The second term is

$$\begin{aligned} -\int x_i \frac{\partial p}{\partial x_j} \, d\mathbf{r} =\delta _{ij} \int p \, d\mathbf{r}. \end{aligned}$$
(6.97)

The third term is

$$\begin{aligned} -\int \rho x_i \frac{\partial \varPhi }{\partial x_j} \, d\mathbf{r} =W_{ij}, \end{aligned}$$
(6.98)

where \(W_{ij}\) is the potential energy tensor. It is a simple matter to show that this tensor is symmetric: \(W_{ij}=W_{ji}\) [1]. The fourth term is

$$\begin{aligned} -\int x_i \frac{\rho }{m} \frac{\partial Q}{\partial x_j} \, d\mathbf{r} =-\int x_{i}\partial _{k}P_{jk}\, d\mathbf{r}=\int P_{ij}\, d\mathbf{r}, \end{aligned}$$
(6.99)

where \(P_{ij}\) is the quantum pressure tensor defined by Eq. (6.17). Substituting these results in Eq. (6.95), we obtain the tensorial Virial theorem

$$\begin{aligned} \frac{1}{2}\ddot{I}_{ij}=\int \rho u_iu_j\, d\mathbf{r}+\int P_{ij}\, d\mathbf{r} +\delta _{ij}\int p\, d\mathbf{r}+W_{ij}. \end{aligned}$$
(6.100)

Contracting the indices and using the fact that \(\int P_{ii}\, d\mathbf{r}=2\Theta _Q\) [this can be obtained from Eqs. (6.17) and (6.39)] and \(W_{ii}=-\int \rho \mathbf{r}\cdot \nabla \varPhi \, d\mathbf{r}=W\) [the Virial of the gravitational force in \(d=3\) is equal to the potential energy [1]], we obtain

$$\begin{aligned} \frac{1}{2}\ddot{I}=2(\Theta _c+\Theta _Q)+3\int p\, d\mathbf{r}+W, \end{aligned}$$
(6.101)

where \(I=\int \rho r^2\, d\mathbf{r}\) is the moment of inertia. For a steady state (\(\ddot{I}_{ij}=0\) and \(\mathbf{u}=\mathbf{0}\)), we obtain the equilibrium tensorial Virial theorem

$$\begin{aligned} \int P_{ij}\, d\mathbf{r}+\delta _{ij}\int p\, d\mathbf{r}+W_{ij}=0 \end{aligned}$$
(6.102)

and the scalar Virial theorem

$$\begin{aligned} 2\Theta _Q+3\int p\, d\mathbf{r}+W=0. \end{aligned}$$
(6.103)

These results are valid for an arbitrary equation of state \(p(\rho )\). For the equation of state (6.12), using \(\int p\, d\mathbf{r}=U\), Eqs. (6.101) and (6.103) reduce to Eqs. (6.42) and (6.43).

6.10 Stress Tensor

The equation of continuity (6.14) may be written as

$$\begin{aligned} \frac{\partial \rho }{\partial t}+\nabla \cdot \mathbf{j}=0, \end{aligned}$$
(6.104)

where \(\mathbf{j}=\rho \mathbf{u}\) is the density current. Using Eqs. (6.6) and (6.7), the density current can be expressed in terms of the wave function as

$$\begin{aligned} \mathbf{j}=\frac{N\hbar }{2i}\left( \psi ^*\nabla \psi -\psi \nabla \psi ^*\right) . \end{aligned}$$
(6.105)

On the other hand, the quantum Euler equation (6.13) may be written as

$$\begin{aligned} \frac{\partial \mathbf{j}}{\partial t}=-\nabla (\rho \mathbf{u}\otimes \mathbf{u}) -\nabla p-\rho \nabla \varPhi -\frac{\rho }{m}\nabla Q. \end{aligned}$$
(6.106)

Introducing the quantum pressure tensor, we find that the equation for the density current is given by

$$\begin{aligned} \frac{\partial {j_i}}{\partial t}=-\partial _j T_{ij}-\rho \partial _i\varPhi , \end{aligned}$$
(6.107)

where

$$\begin{aligned} T_{ij}=\rho u_i u_j+p\delta _{ij}+P_{ij} \end{aligned}$$
(6.108)

is the stress tensor. Using Eq. (6.17), we have

$$\begin{aligned} T_{ij}=\rho u_i u_j+p\delta _{ij} -\frac{\hbar ^2}{4m^2}\rho \partial _i\partial _j\ln \rho \end{aligned}$$
(6.109)

or, alternatively,

$$\begin{aligned} T_{ij}=\rho u_i u_j+\left( p-\frac{\hbar ^2}{4m^2}\varDelta \rho \right) \delta _{ij} +\frac{\hbar ^2}{4m^2}\frac{1}{\rho }\partial _i\rho \partial _j\rho . \end{aligned}$$
(6.110)

Using Eqs. (6.6) and (6.7), we find after straightforward algebra that

$$\begin{aligned} \frac{\hbar ^2}{4m^2}\frac{1}{\rho }\partial _i\rho \partial _j\rho = \frac{N\hbar ^2}{4m}\frac{1}{|\psi |^2}(\psi ^*\partial _i\psi +\psi \partial _i\psi ^*) (\psi ^*\partial _j\psi +\psi \partial _j\psi ^*) \end{aligned}$$
(6.111)

and

$$\begin{aligned} \rho u_i u_j=-\frac{N\hbar ^2}{4m}\frac{1}{|\psi |^2}(\psi ^*\partial _i\psi -\psi \partial _i\psi ^*) (\psi ^*\partial _j\psi -\psi \partial _j\psi ^*). \end{aligned}$$
(6.112)

Therefore

$$\begin{aligned} \rho u_i u_j+\frac{\hbar ^2}{4m^2}\frac{1}{\rho }\partial _i\rho \partial _j\rho =\frac{N\hbar ^2}{m}\mathrm{Re}\left( \frac{\partial \psi }{\partial x_i}\frac{\partial \psi ^*}{\partial x_j}\right) . \end{aligned}$$
(6.113)

Regrouping these results, the stress tensor can be expressed in terms of the wave function as

$$\begin{aligned} T_{ij}=\frac{N\hbar ^2}{m}\mathrm{Re}\left( \frac{\partial \psi }{\partial x_i}\frac{\partial \psi ^*}{\partial x_j}\right) +\left( \frac{2\pi a\hbar ^2}{m}N^2|\psi |^4-\frac{N\hbar ^2}{4m}\varDelta |\psi |^2\right) \delta _{ij}. \end{aligned}$$
(6.114)

Finally, we introduce the density of energy

$$\begin{aligned} e=\frac{\mathbf{u}^2}{2}+\frac{Q}{m}+\frac{2\pi a\hbar ^2}{m^3}\rho +\frac{\varPhi }{2}. \end{aligned}$$
(6.115)

Using the equation of continuity (6.14) and the quantum Euler equation (6.15), we obtain the energy equation

$$\begin{aligned} \frac{\partial }{\partial t}(\rho e)+\nabla \cdot (\rho e \mathbf{u})=-\nabla \cdot (p \mathbf{u})-\frac{1}{2}\rho \mathbf{u}\cdot \nabla \varPhi +\frac{\rho }{m}\frac{\partial Q}{\partial t} +\frac{1}{2}\rho \frac{\partial \varPhi }{\partial t}. \end{aligned}$$
(6.116)

The conservation of energy directly results from this equation. Taking the time derivative of the total energy \(E_{tot}=\int \rho e\, d\mathbf{r}\), and using Eq. (6.116), we get

$$\begin{aligned} \dot{E}_{tot}=-\frac{1}{2}\int \rho \mathbf{u}\cdot \nabla \varPhi \, d\mathbf{r}+\int \frac{\rho }{m}\frac{\partial Q}{\partial t}\, d\mathbf{r} +\frac{1}{2}\int \rho \frac{\partial \varPhi }{\partial t}\, d\mathbf{r}. \end{aligned}$$
(6.117)

Using the Poisson equation (6.16) and the equation of continuity (6.14), and integrating by parts, we obtain

$$\begin{aligned} \frac{1}{2}\int \rho \frac{\partial \varPhi }{\partial t}\, d\mathbf{r}&= \frac{1}{8\pi G}\int \varDelta \varPhi \frac{\partial \varPhi }{\partial t}\, d\mathbf{r}=\frac{1}{2}\int \varPhi \frac{\partial \rho }{\partial t}\, d\mathbf{r}\nonumber \\&=-\frac{1}{2}\int \varPhi \nabla \cdot (\rho \mathbf{u})\, d\mathbf{r}=\frac{1}{2}\int \rho \mathbf{u}\cdot \nabla \varPhi \, d\mathbf{r}. \end{aligned}$$
(6.118)

On the other hand, using Eqs. (6.38) and (6.90), we find that

$$\begin{aligned} \int \rho \frac{\partial Q}{\partial t}\, d\mathbf{r}=m\frac{d\Theta _Q}{dt}-\int Q\frac{\partial \rho }{\partial t}\, d\mathbf{r} =\int Q\frac{\partial \rho }{\partial t}\, d\mathbf{r}-\int Q\frac{\partial \rho }{\partial t}\, d\mathbf{r}=0. \end{aligned}$$
(6.119)

Substituting these identities in Eq. (6.117), we obtain \(\dot{E}_{tot}=0\).

6.11 Lagrangian and Hamiltonian

In this Appendix, we discuss the Lagrangian and Hamiltonian structure of the GP equation and of the corresponding hydrodynamic equations.

The Lagrangian of the GP equation (6.4) is

$$\begin{aligned}&L=\int \biggl \lbrace i\frac{\hbar }{2}N\left( \psi ^*\frac{\partial \psi }{\partial t}-\psi \frac{\partial \psi ^*}{\partial t}\right) -\frac{N\hbar ^2}{2m}|\nabla \psi |^2 -\frac{1}{2}Nm|\psi |^2\varPhi -\frac{2\pi a\hbar ^2}{m}N^2|\psi |^4\biggr \rbrace \, d\mathbf{r}.\nonumber \\&\end{aligned}$$
(6.120)

We can view the Lagrangian (6.120) as a functional of \(\psi \), \(\dot{\psi }\), and \(\nabla \psi \). The action is \(S=\int L\, dt\). The least action principle \(\delta S=0\), which is equivalent to the Lagrange equations

$$\begin{aligned} \frac{\partial }{\partial t}\left( \frac{\delta L}{\delta \dot{\psi }}\right) +\nabla \cdot \left( \frac{\delta L}{\delta \nabla \psi }\right) -\frac{\delta L}{\delta \psi }=0 \end{aligned}$$
(6.121)

returns the GP equation (6.4). The Hamiltonian is obtained from the transformation

$$\begin{aligned} H=\int i\frac{\hbar }{2}N\left( \psi ^*\frac{\partial \psi }{\partial t}-\psi \frac{\partial \psi ^*}{\partial t}\right) \, d\mathbf{r}-L \end{aligned}$$
(6.122)

leading to

$$\begin{aligned} H=\int \biggl \lbrace \frac{N\hbar ^2}{2m}|\nabla \psi |^2 +\frac{1}{2}Nm|\psi |^2\varPhi + \frac{2\pi a\hbar ^2}{m}N^2|\psi |^4 \biggr \rbrace \, d\mathbf{r}. \end{aligned}$$
(6.123)

Of course, this expression coincides with the total energy (6.37) in the wavefunction representation. Using the Lagrange equations, one can show that the Hamiltonian is conserved. On the other hand, the GP equation (6.4) can be written as

$$\begin{aligned} i\hbar \frac{\partial \psi }{\partial t}=\frac{1}{N}\frac{\delta H}{\delta \psi ^*}. \end{aligned}$$
(6.124)

A stable stationary solution of the GP equation is a minimum of energy under the normalization condition. Writing the variational principle as \(\delta H-\alpha N m\int |\psi |^2\, d\mathbf{r}=0\) where \(\alpha \) is a Lagrange multiplier (chemical potential), we recover the time-independent GP equation (6.19) with \(E=\alpha m\).

Using the Madelung transformation (see Sect. 6.2.2), we can rewrite the Lagrangian and the Hamiltonian in terms of hydrodynamic variables. According to Eqs. (6.6) and (6.7) we have

$$\begin{aligned} \frac{\partial S}{\partial t}=\frac{\hbar }{2i}\frac{1}{|\psi |^2}\left( \psi ^*\frac{\partial \psi }{\partial t}-\psi \frac{\partial \psi ^*}{\partial t}\right) \end{aligned}$$
(6.125)

and

$$\begin{aligned} |\nabla \psi |^2=\frac{1}{Nm\hbar ^2}\left[\rho (\nabla S)^2+\frac{\hbar ^2}{4\rho }(\nabla \rho )^2\right]. \end{aligned}$$
(6.126)

Substituting these identities in Eq. (6.120) we get

$$\begin{aligned} L=-\int \biggl \lbrace \frac{\rho }{m}\frac{\partial S}{\partial t}+\frac{\rho }{2m^2}(\nabla S)^2 +\frac{\hbar ^2}{8m^2}\frac{(\nabla \rho )^2}{\rho }+\frac{1}{2}\rho \varPhi +\frac{2\pi a\hbar ^2}{m^3}\rho ^2\biggr \rbrace \, d\mathbf{r}. \end{aligned}$$
(6.127)

We can view the Lagrangian (6.127) as a functional of \(S\), \(\dot{S}\), \(\nabla S\), \(\rho \), \(\dot{\rho }\), and \(\nabla \rho \). The Lagrange equations for the phase

$$\begin{aligned} \frac{\partial }{\partial t}\left( \frac{\delta L}{\delta \dot{S}}\right) +\nabla \cdot \left( \frac{\delta L}{\delta \nabla S}\right) -\frac{\delta L}{\delta S}=0 \end{aligned}$$
(6.128)

return the equation of continuity (6.8). The Lagrange equations for the density

$$\begin{aligned} \frac{\partial }{\partial t}\left( \frac{\delta L}{\delta \dot{\rho }}\right) +\nabla \cdot \left( \frac{\delta L}{\delta \nabla \rho }\right) -\frac{\delta L}{\delta \rho }=0 \end{aligned}$$
(6.129)

return the quantum Hamilton-Jacobi (or Bernouilli) equation (6.9) leading to the quantum Euler equation (6.15). The Hamiltonian is obtained from the transformation

$$\begin{aligned} H=-\int \frac{\rho }{m}\frac{\partial S}{\partial t}\, d\mathbf{r}-L \end{aligned}$$
(6.130)

leading to

$$\begin{aligned} H=\int \biggl \lbrace \frac{1}{2}\rho \mathbf{u}^2+\frac{\hbar ^2}{8m^2}\frac{(\nabla \rho )^2}{\rho } +\frac{1}{2}\rho \varPhi +\frac{2\pi a\hbar ^2}{m^3}\rho ^2 \biggr \rbrace \, d\mathbf{r}. \end{aligned}$$
(6.131)

Of course, this expression coincides with the total energy (6.37) in the hydrodynamical representation. Using the Lagrange equations, one can show that the Hamiltonian is conserved.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chavanis, PH. (2015). Self-gravitating Bose-Einstein Condensates. In: Calmet, X. (eds) Quantum Aspects of Black Holes. Fundamental Theories of Physics, vol 178. Springer, Cham. https://doi.org/10.1007/978-3-319-10852-0_6

Download citation

Publish with us

Policies and ethics