Skip to main content

Stellar Activity and CMEs: Important Factors of Planetary Evolution

  • Chapter
  • First Online:
Solar Prominences

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 415))

  • 1637 Accesses

Abstract

CME activity of the Sun is known to be an important impacting factor for the magnetospheres, atmospheres, and surfaces of solar system planets. Following an idea of a solar-stellar analogy, CME phenomena are expected on other stars as well. The main planetary impact factors of the stellar CMEs include the associated interplanetary shocks, plasma density and velocity disturbances, energetic particles accelerated in the shock regions, as well as distortions of the magnetic field direction and modulus. All these factors should be properly taken into account during the study of evolutionary processes on exoplanets and their atmospheric and plasma environments. The planetary impact of the stellar CME activity may vary depending on stellar age, stellar spectral type and the orbital distance of a planet. Because of the relatively short range of propagation of the majority of CMEs, they affect most strongly the magnetospheres and atmospheres of close-orbit ( < 0.1 AU) exoplanets. In this chapter we discuss an issue of the stellar CME activity in the context of several actual problems of modern exoplanetology, including planetary atmosphere mass loss, planet survival at close orbits, and definition of a criterion for habitability.

“Pathways to Habitability” Team of the FWF-NFN Project S116: Helmut Lammer, Manuel Güdel, Igor I. Alexeev, Elena S. Belenkaya, Ildar F. Shaikhislamov, Kristina G. Kislyakova, Petra Odert, Martin Leitzinger, Oleksiy V. Arkhypov, Yury Sasunov, Zoltan Vörös

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul-Aziz, H., et al. (1995). Coordinated observations of the red dwarf flare star EV Lacertae in 1992. Astronomy and Astrophysics Supplement, 114, 509.

    ADS  Google Scholar 

  • Abranin, E. P., et al. (1998). Coordinated Observations of the Red Dwarf Flare Star EV LAC in 1994 and 1995. Astronomical and Astrophysical Transactions, 17, 221.

    Article  ADS  Google Scholar 

  • Adams, F. C. (2011). Magnetically controlled outflows from hot Jupiters. Astrophysical Journal, 730, article id. 27.

    Google Scholar 

  • Alexeev, I. I., Belenkaya, E. S., Bobrovnikov, S. Yu., et al. (2003). Modelling of the electromagnetic field in the interplanetary space and in the Earth’s magnetosphere. Space Science Review, 107, 7.

    Article  ADS  Google Scholar 

  • Alexeev, I. I., & Belenkaya, E. S. (2005). Modeling of the Jovian Magnetosphere. Annals of Geophysics, 23, 809.

    Article  Google Scholar 

  • Alexeev, I. I., Kalegaev, V. V., Belenkaya, E. S., et al. (2006). A global magnetic model of Saturn’s magnetosphere and a comparison with Cassini SOI data. Geophysical Research Letters, 33, L08101.

    ADS  Google Scholar 

  • Ambruster, C. W., Pettersen, B. R., Hawley, S., et al. (1986). An episode of mass expulsions from the M-dwarf flare star EV Lacertae? In E. J. Rolfe (Ed.), New Insights in Astrophysics. Eight Years of UV Astronomy with IUE (p. 137). ESA SP-263

    Google Scholar 

  • Antonov, V. M., Boyarinsev, E. L., Boyko, A. A., et al. (2013). Inflation of a dipole field in laboratory experiments: Toward an Understanding of magnetodisk formation in the magnetosphere of a hot Jupiter. Astrophysical Journal, 769, 28.

    Article  ADS  Google Scholar 

  • Aschwanden, M. J., Ntta, N. V., Wuelser, J. -P., et al. (2009). First measurements of the mass of coronal mass ejections from the euv dimming observed with STEREO EUVI A + B spacecraft. Astrophysical Journal, 706, 376.

    Article  ADS  Google Scholar 

  • Audard, M., Güdel, M., Drake, J. J., et al. (2000). Extreme-ultraviolet flare activity in late-type stars. Astrophysical Journal, 541, 396.

    Article  ADS  Google Scholar 

  • Ayres, T. R. (1997). Evolution of the solar ionizing flux. Journal of Geophysical Research, 102, 1641.

    Article  ADS  Google Scholar 

  • Batalha N. M., Rowe J. F., Bryson S. T., et al. (2013). Planetary Candidates observed by Kepler. III. Analysis of the first 16 months of data. Astrophysical Journal Supplement Series, 204, id.24.

    Google Scholar 

  • Bewsher, D., Harrison, R. A., & Brown, D. S. (2008). The relationship between EUV dimming and coronal mass ejections. I. Statistical study and probability model. Astronomy and Astrophysics, 478, 897

    Google Scholar 

  • Bloomfield, D. S., Mathioudakis, M., Christian, D. J., et al. (2002). Opacity in the upper atmosphere of AU Mic. Astronomy and Astrophysics, 390, 219.

    Article  ADS  Google Scholar 

  • Bond, H. E., Mullan, D. J., O’Brien, M. S., et al. (2001). Detection of coronal mass ejections in v471 tauri with the hubble space telescope. Astrophysical Journal, 560, 919.

    Article  ADS  Google Scholar 

  • Bonfils X., Delfosse X., Udry S., et al. (2013). The HARPS search for southern extra-solar planets. XXXI. The M-dwarf sample. Astronomy and Astrophysics, 549, A109.

    Google Scholar 

  • Busse, F. H. (1976). Generation planetary magnetism by convection. Physics of the Earth and Planetary Interiors, 12(4), 350.

    Article  ADS  Google Scholar 

  • Christensen, U. R., & Aubert, J. (2006). Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophysical Journal International, 166, 97.

    Article  ADS  Google Scholar 

  • Christensen, U. R. (2010). Dynamo scaling laws and applications to the planets. Space Science Review, 152, 565.

    Article  ADS  Google Scholar 

  • Christian, D. J., Mathioudakis, M., Bloomfield, D. S., et al. (2006). Opacity in the upper atmospheres of active stars. II. AD Leonis. Astronomy and Astrophysics, 454, 889.

    Google Scholar 

  • Ciaravella, A., Raymond, J. C., Fineschi, S., et al. (1997). Ultraviolet coronagraph spectrometer observation of the 1996 December 23 coronal mass ejection. Astrophysical Journal, 491, L59.

    Article  ADS  Google Scholar 

  • Cowen, R. (2014). Wind may deflate search for habitable planets. Nature. doi:10.1038/nature.2014.15335.

    Google Scholar 

  • Cully, S. L., Fisher, G. H., Abbott, M. J. et al. (1994). A coronal mass ejection model for the 1992 July 15 flare on AU Microscopii observed by the extreme ultraviolet explorer. Astrophysical Journal, 435, 435.

    Article  Google Scholar 

  • Dupree, A. K., Foukal, P. V., & Jordan, C. (1976). Plasma diagnostic techniques in the ultraviolet - The C III density-sensitive lines in the sun. Astrophysical Journal, 209, 621.

    Article  ADS  Google Scholar 

  • Erkaev, N. V., Penz, T., Lammer, H., et al. (2005). Plasma and magnetic field parameters in the vicinity of short-periodic giant exoplanets. Astrophysical Journal Supplement, 157, 396.

    Article  ADS  Google Scholar 

  • Erkaev N. V., Lammer H., Odert P., et al. (2013). XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part I: Atmospheric expansion and thermal escape. Astrobiology, 13, 1011.

    Google Scholar 

  • Farrell, W. M., Desch, M. D., & Zarka, P. (1999). On the possibility of coherent cyclotron emission from extrasolar planets. Journal of Geophysical Research, 104(E6), 14025.

    Article  ADS  Google Scholar 

  • Fuhrmeister, B., & Schmitt, J. H. M. M. (2004). Detection and high-resolution spectroscopy of a huge flare on the old M 9 dwarf DENIS 104814.7-395606.1. Astronomy and Astrophysics, 420, 1079.

    Google Scholar 

  • Gershberg, R. E. (2005). A solar-type activity in main-sequence stars. Berlin: Springer.

    Google Scholar 

  • Gosling, J. T., Hildner, E., MacQueen, R. M., Munro, R. H., Poland, A. I., & Ross, C. L. (1974). Mass ejections from the sun - A view from SKYLAB. Journal of Geophysical Research, 79, 4581–4587.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., & Thompson, B. J. (2000). Early life of coronal mass ejections. Journal of Atmospheric and Solar-Terrestrial Physics, 62, 1457.

    Article  ADS  Google Scholar 

  • Grenfell J. L., Grießmeier J.-M., von Paris P., et al. (2012). Response of atmospheric biomarkers to NOx-induced photochemistry generated by stellar cosmic rays for earth-like planets in the habitable zone of M dwarf stars. Astrobiology, 12, 1109.

    Article  ADS  Google Scholar 

  • Grießmeier, J. -M., Motschmann, U., Stadelmann, A., et al. (2004). The effect of tidal locking on the magnetospheric and atmospheric evolution of “Hot Jupiters”. Astronomy and Astrophysics, 425, 753.

    Article  ADS  Google Scholar 

  • Grießmeier, J. -M., Stadelmann, A., Motschmann, U., et al. (2005). Cosmic Ray Impact on Extrasolar Earth-Like Planets in Close-in Habitable Zones. Astrobiology, 5(5), 587.

    Article  ADS  Google Scholar 

  • Grießmeier, J. -M., Zarka, P., & Spreeuw, H. (2007a). Predicting low-frequency radio fluxes of known extrasolar planets. Astronomy and Astrophysics, 475, 359.

    Article  ADS  Google Scholar 

  • Grießmeier, J. -M., Preusse, S., Khodachenko, M. L., et al. (2007b). Exoplanetary radio emission under different stellar wind conditions. Planetary and Space Science, 55, 618.

    Article  ADS  Google Scholar 

  • Guenther, E. W., & Emerson, J. P. (1997). Spectrophotometry of flares and short time scale variations in weak line, and classical T Tauri stars in Chamaeleon. Astronomy and Astrophysics, 321, 803.

    ADS  Google Scholar 

  • Guo, J. H. (2011). Escaping particle fluxes in the atmospheres of close-in exoplanets. I. Model of hydrogen. Astrophysical Journal, 733, article id. 98.

    Google Scholar 

  • Guo, J. H. (2013). Escaping particle fluxes in the atmospheres of close-in exoplanets. II. Reduced mass-loss rates and anisotropic winds. Astrophysical Journal, 766, article id. 102.

    Google Scholar 

  • Güdel, M. (2004). X-ray astronomy of stellar coronae. Astronomy and Astrophysics Review, 12, 71.

    Article  ADS  Google Scholar 

  • Houdebine, E. R., Foing, B. H., & Rodono, M. (1990). Dynamics of flares on late-type dMe stars. I - Flare mass ejections and stellar evolution. Astronomy and Astrophysics, 238, 249.

    Google Scholar 

  • Houdebine, E. R., Foing, B. H., Doyle, J. G., et al. (1993a). Dynamics of flares on late type Dme-stars - Part Two - Mass motions and prominence oscillations during a flare on Ad-Leonis. Astronomy and Astrophysics, 274, 245.

    ADS  Google Scholar 

  • Houdebine, E. R., Foing, B. H., Doyle, J. G., et al. (1993b). Dynamics of flares on late-type dMe stars. 3: Kinetic energy and mass momentum budget of a flare on AD Leonis. Astronomy and Astrophysics, 278, 109.

    Google Scholar 

  • Ip, W. -H., Kopp, A., & Hu, J. -H. (2004). On the star-magnetosphere interaction of close-in exoplanets. Astrophysical Journal, 602, L53.

    Article  ADS  Google Scholar 

  • Jackson, P. D., Kundu, M. R., & Kassim, N. (1990). Meter-decameter observations of dMe flare stars with the Clark lake radio telescope. Solar Physics, 130, 391.

    Article  ADS  Google Scholar 

  • Johansson, E. P. G., Bagdonat, T., & Motschmann, U. (2009). Consequences of expanding exoplanetary atmospheres for magnetospheres. Astronomy and Astrophysics, 496, 869.

    Article  ADS  MATH  Google Scholar 

  • Kahler, S. W. (1992). Solar flares and coronal mass ejections. Annual Review Astronomy and Astrophysics, 30, 113.

    Article  ADS  Google Scholar 

  • Kasting J. F., Whitmire D. P., & Reynolds R. T. (1993). Habitable zones around main sequence stars. Icarus, 101, 108.

    Article  ADS  Google Scholar 

  • Kasting, J. F. (1997). Habitable Zones around low mass stars and the search for extraterrestrial life. Origins of Life and Evolution of Biospheres, 27(1/3), 291.

    Article  ADS  Google Scholar 

  • Kathiravan, C., & Ramesh, R. (2005). Identification of the source region of a “Halo” coronal mass ejection using meter-wavelength radio data. Astrophysical Journal, 627, L77.

    Article  ADS  Google Scholar 

  • Khodachenko, M. L., Ribas, I., Lammer, H., et al. (2007a). Coronal Mass Ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets, Part I: CME impact on expected magnetospheres of Earth-like exoplanets in close-in habitable zones. Astrobiology, 7, 167.

    Article  ADS  Google Scholar 

  • Khodachenko, M. L., Lammer, H., Lichtenegger, H. I. M., et al. (2007b). Mass loss of “Hot Jupiters” - Implications for CoRoT discoveries. Part I: The importance of magnetospheric protection of a planet against ion loss caused by coronal mass ejections. Planetary and Space Science, 55, 631.

    Google Scholar 

  • Khodachenko, M. L., Alexeev, I. I., Belenkaya, E. et al. (2012). Magnetospheres of ‘Hot Jupiters’: The importance of magnetodisks for shaping of magnetospheric obstacle. Astrophysical Journal, 744, article id. 70.

    Google Scholar 

  • Khodachenko, M. L., Sasunov, Yu., Arkhypov, O., et al. (2013). Stellar CME activity and its possible influence on exoplanets’ environments: Importance of magnetospheric protection. In B. Schmieder & J.-M. Malherbe (Eds.), Nature of prominences and their role in space weather. IAUS 300, 335.

    Google Scholar 

  • Kislyakova, K. G., Lammer, H., Holmström, M., et al. (2013). XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part II: hydrogen coronae and ion escape. Astrobiology, 13, 1030.

    Google Scholar 

  • Kislyakova, K. G., Johnstone, C. P., Odert, P., et al. (2014). Stellar wind interaction and pick-up ion escape of the Kepler-11 “super-Earths”. Astronomy and Astrophysics, 562, id.A116.

    Google Scholar 

  • Koskinen, T. T., Yelle, R. V., Lavvas, P., et al. (2010). Characterizing the thermosphere of HD209458b with UV transit observations. Astrophysical Journal, 723, 116.

    Article  ADS  Google Scholar 

  • Koskinen T. T., Harris M. J., Yelle R. V., et al. (2013). The escape of heavy atoms from the ionosphere of HD209458b. I. A photochemical-dynamical model of the thermosphere. Icarus, 226, 1678.

    Google Scholar 

  • Kulikov Yu. N., Lammer H., Lichtenegger H. I. M., et al. (2007). A comparative study of the influence of the active young sun on the early atmospheres of earth, venus, and mars. Space Science Review, 129, 207.

    Article  ADS  Google Scholar 

  • Lammer, H., Selsis, F., Ribas, I., Guinan, E. F., Bauer, S. J., Weiss, W. W. (2003). Atmospheric loss of exoplanets resulting from stellar X-ray and extreme-ultraviolet heating. Astrophysical Journal, 598, L121–L124.

    Article  ADS  Google Scholar 

  • Lammer, H., Lichtenegger, H., Kulikov, Yu., et al. (2007). CME activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. Part II: CME induced ion pick up of earth-like exoplanets in close-in habitable zones. Astrobiology, 7, 185.

    Google Scholar 

  • Lammer, H., Bredehöft, J. H., Coustenis, A., et al. (2009a). What makes a planet habitable? Astronomy and Astrophysics Review, 17, 181.

    Article  ADS  Google Scholar 

  • Lammer, H., Odert, P., Leitzinger, M., et al. (2009b). Determining the mass loss limit for close-in exoplanets: What can we learn from transit observations? Astronomy and Astrophysics, 506, 399.

    Article  ADS  Google Scholar 

  • Lammer, H., Erkaev, N. V., Odert, P., et al. (2013). Probing the blow-off criteria of hydrogen-rich ‘super-Earths’. MNRAS, 430, 1247.

    Article  ADS  Google Scholar 

  • Leitzinger, M., Odert, P., Hansmeier, A., et al. (2009). Decametric observations of active M-dwarfs. In E. Stempels (Ed.), American Institute of Physics Conference Series (Vol. 1094, p. 680).

    Google Scholar 

  • Leitzinger, M., Odert, P., Hanslmeier, A., et al. (2010). Spectral line enhancements as signatures for stellar activity: AD Leonis - an example. International Journal of Astrobiology, 9(4), 235.

    Article  ADS  Google Scholar 

  • Leitzinger, M., Odert, P., Ribas, I., et al. (2011). Search for indications of stellar mass ejections using FUV spectra. Astronomy and Astrophysics, 536, A62.

    Article  ADS  Google Scholar 

  • Lichtenegger, H. I. M., Gröller, H., Lammer, H. et al. (2009). On the elusive hot oxygen corona of Venus. Geophysical Research Letters, 36, CiteID L10204.

    Google Scholar 

  • Maehara H., Shibayama T., Notsu S., et al. (2012). Superflares on solar-type stars. Nature, 485, 478.

    ADS  Google Scholar 

  • Mestel, L. (1968) Magnetic braking by a stellar wind-I. MNRAS, 138, 359.

    Article  ADS  Google Scholar 

  • Mizutani, H., Yamamoto, T., & Fujimura, A. (1992). A new scaling law of the planetary magnetic fields. Advanced Space Research, 12(8), 265.

    Article  ADS  Google Scholar 

  • Mullan, D. J., Sion, E. M., Bruhweiler, F. C., et al. (1989). Evidence for a cool wind from the K2 dwarf in the detached binary V471 Tauri. Astrophysical Journal, 339, L33.

    Article  ADS  Google Scholar 

  • Newkirk, G., Jr. (1980). Solar variability on time scales of 10 to the 5th years to 10 to the 9.6th years. Geochimica et Cosmochimica Acta Supplement, 13, 293.

    Google Scholar 

  • Osten R. A., Godet O., Drake S., et al. (2010). The mouse that roared: A superflare from the dMe flare star EV lac detected by swift and konus-wind. Astrophysical Journal, 721, 785.

    Article  ADS  Google Scholar 

  • Parker, E. N. (1955). Hydromagnetic dynamo models. Astrophysical Journal, 122, 293.

    Article  ADS  MathSciNet  Google Scholar 

  • Parker, E. N. (1958). Dynamics of the interplanetary gas and magnetic fields. Astrophysical Journal, 128, 664.

    Article  ADS  Google Scholar 

  • Parker, E. N. (1993). A solar dynamo surface wave at the interface between convection and nonuniform rotation. Astrophysical Journal, 408, 707.

    Article  ADS  Google Scholar 

  • Penz, T., Erkaev, N. V., Kulikov, Yu. N. et al. (2008). Mass loss from “Hot Jupiters” Implications for CoRoT discoveries, Part II: Long time thermal atmospheric evaporation modeling. Planetary and Space Science, 56, 1260.

    Article  ADS  Google Scholar 

  • Pierrehumbert, R., & Gaidos, E. (2011). Hydrogen Greenhouse Planets Beyond the Habitable Zone. Astrophysical Journal, 734, id L13.

    Google Scholar 

  • Preusse, S., Kopp, A., Büchner, J., et al. (2005). Stellar wind regimes of close-in extrasolar planets. Astronomy and Astrophysics, 434, 1191.

    Article  ADS  Google Scholar 

  • Reiners, A., & Christensen, U. R. (2010). A magnetic field evolution scenario for brown dwarfs and giant planets. Astronomy and Astrophysics, 522, A13.

    Article  ADS  Google Scholar 

  • Ribas, I., Guinan, E. F., Güdel, M., et al. (2005). Evolution of the Solar Activity over Time and Effects on Planetary Atmospheres. I. High-Energy Irradiances (1–1700 Å). Astrophysical Journal, 622, 680.

    Google Scholar 

  • Sánchez-Lavega, A. (2004). The magnetic field in giant extrasolar planets. Astrophysical Journal, 609, L87.

    Article  ADS  Google Scholar 

  • Sano, Y. (1993). The magnetic fields of the planets: A new scaling law of the dipole moments of the planetary magnetism. J. Geomag. Geoelectr., 45, 65.

    Article  Google Scholar 

  • Scalo, J., Kaltenegger, L., Segura, A. G., et al. (2007). M stars as targets for terrestrial exoplanet searches and biosignature detection. Astrobiology, 7, 85.

    Article  ADS  Google Scholar 

  • Schaefer, B. E., King, J. R., & Deliyannis, C. P. (2000). Superflares on ordinary solar-type stars. Astrophysical Journal, 529, 1026.

    Article  ADS  Google Scholar 

  • Schrijver, C. J., Beer, J., Baltensperger, U., et al. (2012). Estimating the frequency of extremely energetic solar events, based on solar, stellar, lunar, and terrestrial records. Journal of Geophysical Research, 117, CiteID A08103.

    Google Scholar 

  • Seager, S. (2013). Exoplanet habitability. Science 340, 577.

    Article  ADS  Google Scholar 

  • Segura, A., Walkowicz, L. M., Meadows, V., et al. (2010). The Effect of a strong stellar flare on the atmospheric chemistry of an earth-like planet orbiting an M Dwarf. Astrobiology, 10, 751.

    Article  ADS  Google Scholar 

  • Sheeley, N. R., Jr., Wang, Y.-M., Hawley, S. H., et al. (1997). Measurements of flow speeds in the corona between 2 and 30 R Sun . Astrophysical Journal, 484, 472.

    Article  ADS  Google Scholar 

  • Shematovich, V. I. (2012). Formation of complex chemical species in astrochemistry (a review). Solar System Research, 46, 391.

    Article  ADS  Google Scholar 

  • Showman, A. P., & Guillot, T. (2002). Atmospheric circulation and tides of “51 Pegasus b-like” planets. Astronomy and Astrophysics, 385, 166.

    Article  ADS  Google Scholar 

  • Skumanich, A. (1972). Time scales for ca ii emission decay, rotational braking, and lithium depletion. Astrophysical Journal, 171, 565.

    Article  ADS  Google Scholar 

  • Stevenson, D. J. (1983). Planetary magnetic fields. Reports on Progress in Physics, 46, 555.

    Article  ADS  Google Scholar 

  • Stevenson, D. J. (2003). Planetary magnetic fields. Earth and Planetary Science Letters, 208, 1.

    Article  ADS  Google Scholar 

  • Trammell, G. B., Arras, P., & Li, Z.-Y. (2011). Hot Jupiter magnetospheres. Astrophysical Journal, 728, 152.

    Article  ADS  Google Scholar 

  • Tian, F., Toon, O. B., Pavlov, A. A., et al. (2005). Transonic hydrodynamic escape of hydrogen from extrasolar planetary atmospheres. Astrophysical Journal, 621, 1049.

    Article  ADS  Google Scholar 

  • Tousey, R. (1973). The solar corona. In M.J. Rycroft & S. K. Runcorn (Eds.), Space research XIII (p. 713). Berlin: Akademie.

    Google Scholar 

  • Walker, J. C. G., Hays, P. B., & Kasting, J. F. (1981). A negative feedback mechanism for the long-term stabilization of the earth’s surface temperature. Journal of Geophysical Research, 86, 9776.

    Article  ADS  Google Scholar 

  • Wilson, O. C. (1966). Stellar convection zones, chromospheres, and rotation. Astrophysical Journal, 144, 695.

    Article  ADS  Google Scholar 

  • Wood, B. E., Müller, H.-R., Zank, G. P., et al. (2002). Measured mass-loss rates of solar-like stars as a function of age and activity. Astrophysical Journal, 574, 412.

    Article  ADS  Google Scholar 

  • Wood, B. E., Müller, H. -R., Zank, G. P., et al. (2005). New Mass-loss measurements from astrospheric Lya absorption. Astrophysical Journal, 628, L143.

    Article  ADS  Google Scholar 

  • Woodward, T. I., & McKenzie, J. F. (1999). Stationary incompressible MHD perturbations generated by a current source in a moving plasma. Planetary and Space Science, 47, 545.

    Article  ADS  Google Scholar 

  • Yelle, R. V. (2004). Aeronomy of extra-solar giant planets at small orbital distances. Icarus, 170, 167.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NFN project S116 “Pathways to Habitability” of the Austrian Science Foundation (FWF) and its related subprojects S11606-N16, S11607-N16. The authors acknowledge the support of the FWF project P25587-N27 and RFBR grant 14-29-06036 and thank the ISSI team Characterizing stellar and exoplanetary environments as well as EU FP7 project IMPEx for providing collaborative environment for research and communication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim L. Khodachenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Khodachenko, M.L. (2015). Stellar Activity and CMEs: Important Factors of Planetary Evolution. In: Vial, JC., Engvold, O. (eds) Solar Prominences. Astrophysics and Space Science Library, vol 415. Springer, Cham. https://doi.org/10.1007/978-3-319-10416-4_18

Download citation

Publish with us

Policies and ethics